IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2604-d172901.html
   My bibliography  Save this article

Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations

Author

Listed:
  • Abhinandana Boodi

    (Laboratoire d’Innovation Numérique pour les Entreprises et les Apprentissages au service de la Compétitivité des Territoires, Centre des Études Supérieures Industrielles, 2 Avenue de Provence, 29200 Brest, France
    Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France)

  • Karim Beddiar

    (Laboratoire d’Innovation Numérique pour les Entreprises et les Apprentissages au service de la Compétitivité des Territoires, Centre des Études Supérieures Industrielles, 2 Avenue de Provence, 29200 Brest, France)

  • Malek Benamour

    (Laboratoire d’Innovation Numérique pour les Entreprises et les Apprentissages au service de la Compétitivité des Territoires, Centre des Études Supérieures Industrielles, 2 Avenue de Provence, 29200 Brest, France)

  • Yassine Amirat

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), ISEN Yncréa Ouest, 29200 Brest, France)

  • Mohamed Benbouzid

    (Institut de Recherche Dupuy de Lôme (UMR CNRS 6027 IRDL), University of Brest, 29238 Brest, France
    Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China)

Abstract

Today, buildings consume more than 40% of primary energy in and produce more than 36% of CO 2 . So, an intelligent controller applied to the buildings for energy and comfort management could achieve significant reduction in energy consumption while improving occupant’s comfort. Conventional on/off controllers were only able to automate the tasks in building and were not well suited for energy optimization tasks. Therefore, building energy management has become a focal point in recent years, promising the development of various technologies for various scenarios. This paper deals with a state of the art review on recent developments in building energy management system (BEMS) and occupants comfort, focusing on three model types: white box, black box, and gray box models. Through a comparative study, this paper presents pros and cons of each model.

Suggested Citation

  • Abhinandana Boodi & Karim Beddiar & Malek Benamour & Yassine Amirat & Mohamed Benbouzid, 2018. "Intelligent Systems for Building Energy and Occupant Comfort Optimization: A State of the Art Review and Recommendations," Energies, MDPI, vol. 11(10), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2604-:d:172901
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2604/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    3. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    4. Lu, Yuehong & Wang, Shengwei & Yan, Chengchu & Shan, Kui, 2015. "Impacts of renewable energy system design inputs on the performance robustness of net zero energy buildings," Energy, Elsevier, vol. 93(P2), pages 1595-1606.
    5. Benedetti, Miriam & Cesarotti, Vittorio & Introna, Vito & Serranti, Jacopo, 2016. "Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study," Applied Energy, Elsevier, vol. 165(C), pages 60-71.
    6. Afram, Abdul & Janabi-Sharifi, Farrokh, 2015. "Gray-box modeling and validation of residential HVAC system for control system design," Applied Energy, Elsevier, vol. 137(C), pages 134-150.
    7. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    8. Kim, Wonuk & Jeon, Yongseok & Kim, Yongchan, 2016. "Simulation-based optimization of an integrated daylighting and HVAC system using the design of experiments method," Applied Energy, Elsevier, vol. 162(C), pages 666-674.
    9. Chen, Xiao & Wang, Qian & Srebric, Jelena, 2016. "Occupant feedback based model predictive control for thermal comfort and energy optimization: A chamber experimental evaluation," Applied Energy, Elsevier, vol. 164(C), pages 341-351.
    10. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    11. Delgarm, N. & Sajadi, B. & Kowsary, F. & Delgarm, S., 2016. "Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)," Applied Energy, Elsevier, vol. 170(C), pages 293-303.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Sharma, Sumedha & Dua, Amit & Singh, Mukesh & Kumar, Neeraj & Prakash, Surya, 2018. "Fuzzy rough set based energy management system for self-sustainable smart city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3633-3644.
    14. von Grabe, Jörn, 2016. "Potential of artificial neural networks to predict thermal sensation votes," Applied Energy, Elsevier, vol. 161(C), pages 412-424.
    15. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    16. Naji, Sareh & Keivani, Afram & Shamshirband, Shahaboddin & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Mansor, Zulkefli & Lee, Malrey, 2016. "Estimating building energy consumption using extreme learning machine method," Energy, Elsevier, vol. 97(C), pages 506-516.
    17. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    18. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joanna Piotrowska-Woroniak & Tomasz Szul & Krzysztof Cieśliński & Jozef Krilek, 2022. "The Impact of Weather-Forecast-Based Regulation on Energy Savings for Heating in Multi-Family Buildings," Energies, MDPI, vol. 15(19), pages 1-30, October.
    2. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    3. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    4. Giuseppe Anastasi & Carlo Bartoli & Paolo Conti & Emanuele Crisostomi & Alessandro Franco & Sergio Saponara & Daniele Testi & Dimitri Thomopulos & Carlo Vallati, 2021. "Optimized Energy and Air Quality Management of Shared Smart Buildings in the COVID-19 Scenario," Energies, MDPI, vol. 14(8), pages 1-17, April.
    5. Daniel Plörer & Sascha Hammes & Martin Hauer & Vincent van Karsbergen & Rainer Pfluger, 2021. "Control Strategies for Daylight and Artificial Lighting in Office Buildings—A Bibliometrically Assisted Review," Energies, MDPI, vol. 14(13), pages 1-18, June.
    6. Joanna Piotrowska-Woroniak & Krzysztof Cieśliński & Grzegorz Woroniak & Jonas Bielskus, 2022. "The Impact of Thermo-Modernization and Forecast Regulation on the Reduction of Thermal Energy Consumption and Reduction of Pollutant Emissions into the Atmosphere on the Example of Prefabricated Build," Energies, MDPI, vol. 15(8), pages 1-32, April.
    7. Lukas Lundström & Jan Akander & Jesús Zambrano, 2019. "Development of a Space Heating Model Suitable for the Automated Model Generation of Existing Multifamily Buildings—A Case Study in Nordic Climate," Energies, MDPI, vol. 12(3), pages 1-27, February.
    8. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    9. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2022. "Building Thermal-Network Models: A Comparative Analysis, Recommendations, and Perspectives," Energies, MDPI, vol. 15(4), pages 1-27, February.
    10. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Giovanni Bianco & Stefano Bracco & Federico Delfino & Lorenzo Gambelli & Michela Robba & Mansueto Rossi, 2020. "A Building Energy Management System Based on an Equivalent Electric Circuit Model," Energies, MDPI, vol. 13(7), pages 1-23, April.
    12. Abhinandana Boodi & Karim Beddiar & Yassine Amirat & Mohamed Benbouzid, 2020. "Simplified Building Thermal Model Development and Parameters Evaluation Using a Stochastic Approach," Energies, MDPI, vol. 13(11), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Afroz, Zakia & Shafiullah, GM & Urmee, Tania & Higgins, Gary, 2018. "Modeling techniques used in building HVAC control systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 64-84.
    2. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    3. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    4. Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    5. Ahn, Jonghoon & Cho, Soolyeon, 2017. "Anti-logic or common sense that can hinder machine’s energy performance: Energy and comfort control models based on artificial intelligence responding to abnormal indoor environments," Applied Energy, Elsevier, vol. 204(C), pages 117-130.
    6. Mahmoud Abdelkader Bashery Abbass & Mohamed Hamdy, 2021. "A Generic Pipeline for Machine Learning Users in Energy and Buildings Domain," Energies, MDPI, vol. 14(17), pages 1-30, August.
    7. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    8. Wei, Yixuan & Xia, Liang & Pan, Song & Wu, Jinshun & Zhang, Xingxing & Han, Mengjie & Zhang, Weiya & Xie, Jingchao & Li, Qingping, 2019. "Prediction of occupancy level and energy consumption in office building using blind system identification and neural networks," Applied Energy, Elsevier, vol. 240(C), pages 276-294.
    9. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.
    10. Xu, Bin & Cheng, Yuan-xia & Chen, Xing-ni & Xie, Xing & Ji, Jie & Jiao, Dong-sheng, 2023. "Error correction method for heat flux and a new algorithm employed in inverting wall thermal resistance using an artificial neural network: Based on IN-SITU heat flux measurements," Energy, Elsevier, vol. 282(C).
    11. Byung-Ki Jeon & Eui-Jong Kim, 2021. "LSTM-Based Model Predictive Control for Optimal Temperature Set-Point Planning," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    12. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
    13. Zhang, Yan & Teoh, Bak Koon & Wu, Maozhi & Chen, Jiayu & Zhang, Limao, 2023. "Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence," Energy, Elsevier, vol. 262(PA).
    14. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    15. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
    17. Israr Ullah & DoHyeun Kim, 2017. "An Improved Optimization Function for Maximizing User Comfort with Minimum Energy Consumption in Smart Homes," Energies, MDPI, vol. 10(11), pages 1-21, November.
    18. Orosz, Matthew & Altes-Buch, Queralt & Mueller, Amy & Lemort, Vincent, 2018. "Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa," Applied Energy, Elsevier, vol. 218(C), pages 382-390.
    19. Hwang, Jun Kwon & Yun, Geun Young & Lee, Sukho & Seo, Hyeongjoon & Santamouris, Mat, 2020. "Using deep learning approaches with variable selection process to predict the energy performance of a heating and cooling system," Renewable Energy, Elsevier, vol. 149(C), pages 1227-1245.
    20. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2604-:d:172901. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.