IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5619-d556614.html
   My bibliography  Save this article

Blockchain Technology and Sustainable Business Models: A Case Study of Devoleum

Author

Listed:
  • Francesco Mercuri

    (Department of Law and Economics of Productive Activities, Faculty of Economics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy)

  • Gaetano della Corte

    (Department of Law and Economics of Productive Activities, Faculty of Economics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy)

  • Federica Ricci

    (Department of Law and Economics of Productive Activities, Faculty of Economics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185 Rome, Italy)

Abstract

The lack of transparency along global supply chains poses challenges in the areas of fraud, pollution, human rights abuses, and inefficiencies. In this context, the blockchain has the potential to offer an unprecedented level of transparency, with a shared and decentralized database in which immutable and encrypted copies of information are stored on every node of the network. Using a single case study methodology, this paper investigates how blockchain technology can improve and facilitate sustainable business models. The aim of this paper is to understand how blockchain technology can drive the development of sustainable business models. Recent studies show the importance of sustainability perspectives for business models. The study was conducted by applying the CAOS (“Characteristic, Ambience, Organization, Start-up”) model to a start-up operating in the agri-food sector, not yet institutionalized, called Devoleum. The results indicate that blockchain technology can increase sustainability through realizing the traceability, security, and non-manipulability of information, which are particularly useful in the agri-food sector. Furthermore, the absence of intermediaries in blockchain technology contributes to reducing transaction costs and the time required to consolidate relations between the company and the environment. The limitations of this study must be identified in that the company is operational but not yet incorporated.

Suggested Citation

  • Francesco Mercuri & Gaetano della Corte & Federica Ricci, 2021. "Blockchain Technology and Sustainable Business Models: A Case Study of Devoleum," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5619-:d:556614
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5619/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5619/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sara Saberi & Mahtab Kouhizadeh & Joseph Sarkis & Lejia Shen, 2019. "Blockchain technology and its relationships to sustainable supply chain management," International Journal of Production Research, Taylor & Francis Journals, vol. 57(7), pages 2117-2135, April.
    2. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    3. Paul Shrivastava, 1995. "Environmental technologies and competitive advantage," Strategic Management Journal, Wiley Blackwell, vol. 16(S1), pages 183-200.
    4. Lin William Cong & Zhiguo He, 2019. "Blockchain Disruption and Smart Contracts," The Review of Financial Studies, Society for Financial Studies, vol. 32(5), pages 1754-1797.
    5. Esther Blanco & Javier Lozano & Javier Rey-Maquieira, 2009. "Do Tourism Firms Have Economic Incentives to Undertake Voluntary Environmental Initiatives?," Springer Books, in: Álvaro Matias & Peter Nijkamp & Manuela Sarmento (ed.), Advances in Tourism Economics, chapter 0, pages 235-253, Springer.
    6. Despeisse, M. & Baumers, M. & Brown, P. & Charnley, F. & Ford, S.J. & Garmulewicz, A. & Knowles, S. & Minshall, T.H.W. & Mortara, L. & Reed-Tsochas, F.P. & Rowley, J., 2017. "Unlocking value for a circular economy through 3D printing: A research agenda," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 75-84.
    7. de Sousa Jabbour, Ana Beatriz Lopes & Jabbour, Charbel Jose Chiappetta & Foropon, Cyril & Godinho Filho, Moacir, 2018. "When titans meet – Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 18-25.
    8. Hughes, Alex & Park, Andrew & Kietzmann, Jan & Archer-Brown, Chris, 2019. "Beyond Bitcoin: What blockchain and distributed ledger technologies mean for firms," Business Horizons, Elsevier, vol. 62(3), pages 273-281.
    9. Chang, Shuchih Ernest & Chen, Yi-Chian & Lu, Ming-Fang, 2019. "Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 1-11.
    10. Chunguang April Bai & James Cordeiro & Joseph Sarkis, 2020. "Blockchain technology: Business, strategy, the environment, and sustainability," Business Strategy and the Environment, Wiley Blackwell, vol. 29(1), pages 321-322, January.
    11. Witold Nowiński & Miklós Kozma, 2017. "How Can Blockchain Technology Disrupt the Existing Business Models?," Entrepreneurial Business and Economics Review, Centre for Strategic and International Entrepreneurship at the Cracow University of Economics., vol. 5(3), pages 173-188.
    12. Ali Vatankhah Barenji & Zhi Li & W. M. Wang & George Q. Huang & David A. Guerra-Zubiaga, 2020. "Blockchain-based ubiquitous manufacturing: a secure and reliable cyber-physical system," International Journal of Production Research, Taylor & Francis Journals, vol. 58(7), pages 2200-2221, April.
    13. Ahluwalia, Saurabh & Mahto, Raj V. & Guerrero, Maribel, 2020. "Blockchain technology and startup financing: A transaction cost economics perspective," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simon Wong & John-Kun-Woon Yeung & Yui-Yip Lau & Joseph So, 2021. "Technical Sustainability of Cloud-Based Blockchain Integrated with Machine Learning for Supply Chain Management," Sustainability, MDPI, vol. 13(15), pages 1-20, July.
    2. Paola Paoloni & Francesca Dal Mas & Amelia Barcellini, 2021. "Leadership femminile in sanit?: possibili soluzioni e strumenti. Un caso di studio," MECOSAN, FrancoAngeli Editore, vol. 0(120), pages 83-104.
    3. Pandey, Vivekanand & Pant, Millie & Snasel, Vaclav, 2022. "Blockchain technology in food supply chains: Review and bibliometric analysis," Technology in Society, Elsevier, vol. 69(C).
    4. Büşra Ayan & Elif Güner & Semen Son-Turan, 2022. "Blockchain Technology and Sustainability in Supply Chains and a Closer Look at Different Industries: A Mixed Method Approach," Logistics, MDPI, vol. 6(4), pages 1-39, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuliano Sansone & Flavio Santalucia & Davide Viglialoro & Paolo Landoni, 2023. "Blockchain for social good and stakeholder engagement: Evidence from a case study," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(5), pages 2182-2193, September.
    2. Kimani, Danson & Adams, Kweku & Attah-Boakye, Rexford & Ullah, Subhan & Frecknall-Hughes, Jane & Kim, Ja, 2020. "Blockchain, business and the fourth industrial revolution: Whence, whither, wherefore and how?," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    3. Dutta, Pankaj & Choi, Tsan-Ming & Somani, Surabhi & Butala, Richa, 2020. "Blockchain technology in supply chain operations: Applications, challenges and research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    4. Zheng, Leven J. & Xiong, Chang & Chen, Xihui & Li, Chung-Sheng, 2021. "Product innovation in entrepreneurial firms: How business model design influences disruptive and adoptive innovation," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    5. Abderahman Rejeb & Karim Rejeb & Steve Simske & Horst Treiblmaier, 2021. "Blockchain Technologies in Logistics and Supply Chain Management: A Bibliometric Review," Logistics, MDPI, vol. 5(4), pages 1-28, October.
    6. Su, Dan & Zhang, Lijun & Peng, Hua & Saeidi, Parvaneh & Tirkolaee, Erfan Babaee, 2023. "Technical challenges of blockchain technology for sustainable manufacturing paradigm in Industry 4.0 era using a fuzzy decision support system," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    7. Friedman, Nicola & Ormiston, Jarrod, 2022. "Blockchain as a sustainability-oriented innovation?: Opportunities for and resistance to Blockchain technology as a driver of sustainability in global food supply chains," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    8. Archana A Mukherjee & Rajesh Kumar Singh & Ruchi Mishra & Surajit Bag, 2022. "Application of blockchain technology for sustainability development in agricultural supply chain: justification framework," Operations Management Research, Springer, vol. 15(1), pages 46-61, June.
    9. de Villiers, Charl & Kuruppu, Sanjaya & Dissanayake, Dinithi, 2021. "A (new) role for business – Promoting the United Nations’ Sustainable Development Goals through the internet-of-things and blockchain technology," Journal of Business Research, Elsevier, vol. 131(C), pages 598-609.
    10. Mohammad Nabipour & M. Ali Ülkü, 2021. "On Deploying Blockchain Technologies in Supply Chain Strategies and the COVID-19 Pandemic: A Systematic Literature Review and Research Outlook," Sustainability, MDPI, vol. 13(19), pages 1-32, September.
    11. Marco Bellucci & Damiano Cesa Bianchi & Giacomo Manetti, 2021. "A literature review on blockchain in accounting research," Working Papers - Business wp2021_04.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    12. Leng, Jiewu & Ruan, Guolei & Jiang, Pingyu & Xu, Kailin & Liu, Qiang & Zhou, Xueliang & Liu, Chao, 2020. "Blockchain-empowered sustainable manufacturing and product lifecycle management in industry 4.0: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Ding, Shusheng & Cui, Tianxiang & Wu, Xiangling & Du, Min, 2022. "Supply chain management based on volatility clustering: The effect of CBDC volatility," Research in International Business and Finance, Elsevier, vol. 62(C).
    14. Vineet Paliwal & Shalini Chandra & Suneel Sharma, 2020. "Blockchain Technology for Sustainable Supply Chain Management: A Systematic Literature Review and a Classification Framework," Sustainability, MDPI, vol. 12(18), pages 1-39, September.
    15. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    16. Wang, Binni & Wang, Pong & Tu, Yiliu, 2021. "Customer satisfaction service match and service quality-based blockchain cloud manufacturing," International Journal of Production Economics, Elsevier, vol. 240(C).
    17. Maurizio Massaro & Francesca Dal Mas & Charbel Jose Chiappetta Jabbour & Carlo Bagnoli, 2020. "Crypto‐economy and new sustainable business models: Reflections and projections using a case study analysis," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(5), pages 2150-2160, September.
    18. Liu Jiaguo & Zhang Huimin & Zhao Huida, 2021. "Blockchain Technology Investment and Sharing Strategy of Port Supply Chain Under Competitive Environment," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 280-309, June.
    19. Marić, Josip & Opazo-Basáez, Marco & Vlačić, Božidar & Dabić, Marina, 2023. "Innovation management of three-dimensional printing (3DP) technology: Disclosing insights from existing literature and determining future research streams," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    20. Gianmarco Bressanelli & Federico Adrodegari & Daniela C. A. Pigosso & Vinit Parida, 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda," Sustainability, MDPI, vol. 14(9), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5619-:d:556614. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.