IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5497-d554498.html
   My bibliography  Save this article

Material Selection in Green Design: A Method Combining DEA and TOPSIS

Author

Listed:
  • Cheng Peng

    (Department of Economics, School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

  • Dianzhuang Feng

    (Department of Economics, School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

  • Sidai Guo

    (Department of Economics, School of Economics and Management, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract

In order to rationalize material selection in green design, this study presents an attempt to combine the methods of generalized Data Envelopment Analysis (DEA) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). By establishing a green material index system, the G-CCR model of generalized DEA was first used to select effective materials from the candidate samples, and TOPSIS was then used to sort the effective suppliers. The combined DEA/TOPSIS model helps to rank the materials by quality, and then integrate both the merits ofG-CCR model and the key characteristics of TOPSIS. The results of this study showed that the combined DEA/TOPSIS model can screen and exclude materials with poor performance when selecting wood for the furniture industry. Therefore, the combined model that is presented in this study provides a more rational and evidentiary basis for material selection in green design.

Suggested Citation

  • Cheng Peng & Dianzhuang Feng & Sidai Guo, 2021. "Material Selection in Green Design: A Method Combining DEA and TOPSIS," Sustainability, MDPI, vol. 13(10), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5497-:d:554498
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5497/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5497/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    2. Rui Zhao & Dingye Wu & Sebastiano Patti, 2020. "A Bibliometric Analysis of Carbon Labeling Schemes in the Period 2007–2019," Energies, MDPI, vol. 13(16), pages 1-16, August.
    3. Abbas Mardani & Edmundas Kazimieras Zavadskas & Kannan Govindan & Aslan Amat Senin & Ahmad Jusoh, 2016. "VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications," Sustainability, MDPI, vol. 8(1), pages 1-38, January.
    4. Elena Arce, María & Saavedra, Ángeles & Míguez, José L. & Granada, Enrique, 2015. "The use of grey-based methods in multi-criteria decision analysis for the evaluation of sustainable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 924-932.
    5. Dubey, Rameshwar & Gunasekaran, Angappa & Samar Ali, Sadia, 2015. "Exploring the relationship between leadership, operational practices, institutional pressures and environmental performance: A framework for green supply chain," International Journal of Production Economics, Elsevier, vol. 160(C), pages 120-132.
    6. Yun, Y. B. & Nakayama, H. & Arakawa, M., 2004. "Multiple criteria decision making with generalized DEA and an aspiration level method," European Journal of Operational Research, Elsevier, vol. 158(3), pages 697-706, November.
    7. H. Fried & C. Lovell & S. Schmidt & S. Yaisawarng, 2002. "Accounting for Environmental Effects and Statistical Noise in Data Envelopment Analysis," Journal of Productivity Analysis, Springer, vol. 17(1), pages 157-174, January.
    8. Rui Zhao & Han Su & Xiaolang Chen & Yanni Yu, 2016. "Commercially Available Materials Selection in Sustainable Design: An Integrated Multi-Attribute Decision Making Approach," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    9. Lee, Hsing-Chen & Chang, Ching-Ter, 2018. "Comparative analysis of MCDM methods for ranking renewable energy sources in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 883-896.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yibo Zhang & Yan Liu & Xuefeng Min & Qifan Jiang & Weizhou Su, 2022. "Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    2. Carman-Ka-Man Lee & Lucas Lui & Yung-Po Tsang, 2021. "Formulation and Prioritization of Sustainable New Product Design in Smart Glasses Development," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
    3. Yi-Shiang Lin & Ming-Huang Lin, 2022. "Exploring Indigenous Craft Materials and Sustainable Design—A Case Study Based on Taiwan Kavalan Banana Fibre," Sustainability, MDPI, vol. 14(13), pages 1-30, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simar, Leopold & Wilson, Paul W., 2007. "Estimation and inference in two-stage, semi-parametric models of production processes," Journal of Econometrics, Elsevier, vol. 136(1), pages 31-64, January.
    2. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    3. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Empirical investigation and validation of sustainability indicators for the assessment of energy sources in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Kyuseok Lee & Kyuwan Choi, 2010. "Cross redundancy and sensitivity in DEA models," Journal of Productivity Analysis, Springer, vol. 34(2), pages 151-165, October.
    5. Saraswat, S.K. & Digalwar, Abhijeet K., 2021. "Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach," Renewable Energy, Elsevier, vol. 171(C), pages 58-74.
    6. Hongjun Guan & Yu Wang & Liye Dong & Aiwu Zhao, 2022. "Efficiency Decomposition Analysis of the Marine Ship Industry Chain Based on Three-Stage Super-Efficiency SBM Model—Evidence from Chinese A-Share-Listed Companies," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    7. Guan, Jiancheng & Chen, Kaihua, 2012. "Modeling the relative efficiency of national innovation systems," Research Policy, Elsevier, vol. 41(1), pages 102-115.
    8. Yang Liu & Jiuchang Wei & Jia Xu & Zhe Ouyang, 2018. "Evaluation of the moderate earthquake resilience of counties in China based on a three-stage DEA model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(2), pages 587-609, March.
    9. Mai, Nhat Chi, 2015. "Efficiency of the banking system in Vietnam under financial liberalization," OSF Preprints qsf6d, Center for Open Science.
    10. Ma-Lin Song & Ron Fisher & Jian-Lin Wang & Lian-Biao Cui, 2018. "Environmental performance evaluation with big data: theories and methods," Annals of Operations Research, Springer, vol. 270(1), pages 459-472, November.
    11. Halkos, George & Tzeremes, Nickolaos, 2007. "Examining the relationship between firm internationalization and firm performance: A nonparametric analysis," MPRA Paper 32082, University Library of Munich, Germany.
    12. James F. Burgess, 2012. "Productivity Analysis in Health Care," Chapters, in: Andrew M. Jones (ed.), The Elgar Companion to Health Economics, Second Edition, chapter 34, Edward Elgar Publishing.
    13. Chang, Kai & Wan, Qiong & Lou, Qichun & Chen, Yili & Wang, Weihong, 2020. "Green fiscal policy and firms’ investment efficiency: New insights into firm-level panel data from the renewable energy industry in China," Renewable Energy, Elsevier, vol. 151(C), pages 589-597.
    14. Zhengxiao Yan & Wei Zhou & Yuyi Wang & Xi Chen, 2022. "Comprehensive Analysis of Grain Production Based on Three-Stage Super-SBM DEA and Machine Learning in Hexi Corridor, China," Sustainability, MDPI, vol. 14(14), pages 1-21, July.
    15. Chiu, Yung-Ho & Chen, Yu-Chuan, 2009. "The analysis of Taiwanese bank efficiency: Incorporating both external environment risk and internal risk," Economic Modelling, Elsevier, vol. 26(2), pages 456-463, March.
    16. Danyu Liu & Ke Zhang, 2022. "Analysis of Spatial Differences and the Influencing Factors in Eco-Efficiency of Urban Agglomerations in China," Sustainability, MDPI, vol. 14(19), pages 1-21, October.
    17. Yibo Zhang & Yan Liu & Xuefeng Min & Qifan Jiang & Weizhou Su, 2022. "Selection of Landfill Cover Materials Based on Data Envelopment Analysis (DEA)—A Case Study on Four Typical Covering Materials," Sustainability, MDPI, vol. 14(17), pages 1-13, August.
    18. Bilgili, Faik & Zarali, Fulya & Ilgün, Miraç Fatih & Dumrul, Cüneyt & Dumrul, Yasemin, 2022. "The evaluation of renewable energy alternatives for sustainable development in Turkey using ‌intuitionistic‌ ‌fuzzy‌-TOPSIS method," Renewable Energy, Elsevier, vol. 189(C), pages 1443-1458.
    19. Liu, Junming & Tone, Kaoru, 2008. "A multistage method to measure efficiency and its application to Japanese banking industry," Socio-Economic Planning Sciences, Elsevier, vol. 42(2), pages 75-91, June.
    20. Pengyue Wu & Jing Ma & Xiaoyu Guo, 2022. "Efficiency evaluation and influencing factors analysis of fiscal and taxation policies: A method combining DEA-AHP and CD function," Annals of Operations Research, Springer, vol. 309(1), pages 325-345, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5497-:d:554498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.