IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2271-d332405.html
   My bibliography  Save this article

Evidence of Arithmetical Uncertainty in Estimation of Light and Water Use Efficiency

Author

Listed:
  • Meetpal S. Kukal

    (Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

  • Suat Irmak

    (Biological Systems Engineering Department, University of Nebraska-Lincoln, Lincoln, NE 68583, USA)

Abstract

It was demonstrated that conventional resource use efficiency (RUE) estimation methodology is largely subject to arithmetic weakness. Extensive field research data on aboveground biomass (AGB), absorbed photosynthetically active radiation (APAR), and crop evapotranspiration (ET c ) in maize, soybean, sorghum, and winter wheat confirmed this methodological bias for light use efficiency (LUE) and water use efficiency (WUE) estimation. LUE and WUE were derived using cumulated (data aggregates across samplings) and independent (data increments across samplings) approaches. Use of cumulated data yielded strong-but-false correlation between AGB and APAR or ET c , being a statistical artefact. RUE values from an independent approach were substantially lower than that from a cumulated approach with greater standard errors. Overall, a cumulated approach tends to oversimplify the complex interactions among carbon and resource coupling in agroecosystems, which is accurately represented when employing an independent approach instead.

Suggested Citation

  • Meetpal S. Kukal & Suat Irmak, 2020. "Evidence of Arithmetical Uncertainty in Estimation of Light and Water Use Efficiency," Sustainability, MDPI, vol. 12(6), pages 1-9, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2271-:d:332405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Payero, J.O. & Tarkalson, D.D. & Irmak, S. & Davison, D. & Petersen, J.L., 2009. "Effect of timing of a deficit-irrigation allocation on corn evapotranspiration, yield, water use efficiency and dry mass," Agricultural Water Management, Elsevier, vol. 96(10), pages 1387-1397, October.
    2. Jones, C. A. & Dyke, P. T. & Williams, J. R. & Kiniry, J. R. & Benson, V. W. & Griggs, R. H., 1991. "EPIC: An operational model for evaluation of agricultural sustainability," Agricultural Systems, Elsevier, vol. 37(4), pages 341-350.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Chen & Ningbo Cui & Yaowei Huang & Xiaotao Hu & Daozhi Gong & Yaosheng Wang & Min Lv & Shouzheng Jiang, 2021. "Investigating the Patterns and Controls of Ecosystem Light Use Efficiency with the Data from the Global Farmland Fluxdata Network," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    2. Gergana Kuncheva & Atanas Z. Atanasov & Milena Kercheva & Margaritka Filipova & Plamena D. Nikolova & Petar Nikolov & Valentin Vlăduț & Veselin Dochev, 2025. "Carbon, Water, and Light Use Efficiency Under Conservation Practice on Sloped Arable Land," Resources, MDPI, vol. 14(6), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Egbendewe-Mondzozo, Aklesso & Swinton, Scott M. & Bals, Bryan D. & Dale, Bruce E., 2011. "Can Dispersed Biomass Processing Protect the Environment and Cover the Bottom Line for Biofuel?," Staff Paper Series 119348, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    2. Chen, Dali & Bao, Jinglong & Chen, Tao & Bai, Mengjie & Pan, Jia & Yuan, Haiying & Wang, Yanrong & Nan, Zhibiao & Hu, Xiaowen, 2024. "Effect of drip irrigation and boron application on enhancing seed production of sainfoin (Onobrychis viciifolia) in Northwest China," Agricultural Water Management, Elsevier, vol. 306(C).
    3. Motazedian, Azam & Kazemeini, Seyed Abdolreza & Bahrani, Mohammad Jafar, 2019. "Sweet corn growth and GrainYield as influenced by irrigation and wheat residue management," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    5. Murley, Cameron B. & Sharma, Sumit & Warren, Jason G. & Arnall, Daryl B. & Raun, William R., 2018. "Yield response of corn and grain sorghum to row offsets on subsurface drip laterals," Agricultural Water Management, Elsevier, vol. 208(C), pages 357-362.
    6. A. P. Moxey & B. White & R. A. Sanderson & S. P. Rushton, 1995. "An Approach To Linking An Ecological Vegetation Model To An Agricultural Economic Model," Journal of Agricultural Economics, Wiley Blackwell, vol. 46(3), pages 381-397, September.
    7. Kukal, M.S. & Irmak, S., 2020. "Impact of irrigation on interannual variability in United States agricultural productivity," Agricultural Water Management, Elsevier, vol. 234(C).
    8. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    9. Mukherjee, A. & Kundu, M. & Sarkar, S., 2010. "Role of irrigation and mulch on yield, evapotranspiration rate and water use pattern of tomato (Lycopersicon esculentum L.)," Agricultural Water Management, Elsevier, vol. 98(1), pages 182-189, December.
    10. Zou, Haiyang & Fan, Junliang & Zhang, Fucang & Xiang, Youzhen & Wu, Lifeng & Yan, Shicheng, 2020. "Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China," Agricultural Water Management, Elsevier, vol. 230(C).
    11. Srinivasan, M.S. & Measures, Richard & Muller, Carla & Neal, Mark & Rajanayaka, Channa & Shankar, Ude & Elley, Graham, 2021. "Comparing the water use metrics of just-in-case, just-in-time and justified irrigation strategies using a scenario-based tool," Agricultural Water Management, Elsevier, vol. 258(C).
    12. Grotelüschen, Kristina & Gaydon, Donald S. & Langensiepen, Matthias & Ziegler, Susanne & Kwesiga, Julius & Senthilkumar, Kalimuthu & Whitbread, Anthony M. & Becker, Mathias, 2021. "Assessing the effects of management and hydro-edaphic conditions on rice in contrasting East African wetlands using experimental and modelling approaches," Agricultural Water Management, Elsevier, vol. 258(C).
    13. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    14. Wu, Yang & Jia, Zhikuan & Ren, Xiaolong & Zhang, Yan & Chen, Xin & Bing, Haoyang & Zhang, Peng, 2015. "Effects of ridge and furrow rainwater harvesting system combined with irrigation on improving water use efficiency of maize (Zea mays L.) in semi-humid area of China," Agricultural Water Management, Elsevier, vol. 158(C), pages 1-9.
    15. Rodrigues, Gonçalo C. & Paredes, Paula & Gonçalves, José M. & Alves, Isabel & Pereira, Luis S., 2013. "Comparing sprinkler and drip irrigation systems for full and deficit irrigated maize using multicriteria analysis and simulation modelling: Ranking for water saving vs. farm economic returns," Agricultural Water Management, Elsevier, vol. 126(C), pages 85-96.
    16. Liu, Xiuxia & Ma, Shimeng & Fang, Yu & Wang, Sufen & Guo, Ping, 2023. "A novel approach to identify crop irrigation priority," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Ertek, A. & Kara, B., 2013. "Yield and quality of sweet corn under deficit irrigation," Agricultural Water Management, Elsevier, vol. 129(C), pages 138-144.
    18. Hao, Baozhen & Xue, Qingwu & Marek, Thomas H. & Jessup, Kirk E. & Hou, Xiaobo & Xu, Wenwei & Bynum, Edsel D. & Bean, Brent W., 2015. "Soil water extraction, water use, and grain yield by drought-tolerant maize on the Texas High Plains," Agricultural Water Management, Elsevier, vol. 155(C), pages 11-21.
    19. Vázquez-Montenegro, Ranses José & Durán-Zarabozo, Odil & Baca, Marcio, . "Modelos de impacto en la agricultura teniendo en cuenta los escenarios de la agricultura del cambio climático," Revista Iberoamericana de Bioeconomía y Cambio Climàtico, National Autonomous University of Nicaragua, Leon, vol. 1(01), pages 1-50.
    20. Ma, Shou-Chen & Zhang, Wei-Qiang & Duan, Ai-Wang & Wang, Tong-Chao, 2019. "Effects of controlling soil moisture regime based on root-sourced signal characteristics on yield formation and water use efficiency of winter wheat," Agricultural Water Management, Elsevier, vol. 221(C), pages 486-492.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2271-:d:332405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.