IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i2p583-d308108.html
   My bibliography  Save this article

The Impact of the Freight Transport Modal Shift Policy on China’s Carbon Emissions Reduction

Author

Listed:
  • Shuling Chen

    (School of Economics, Xiamen University, Xiamen 361005, China)

  • Jianhong Wu

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

  • Yueqi Zong

    (School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China)

Abstract

How to reduce the negative transport externalities, especially its carbon emissions, without having significant negative influence on economic and social development is the key for sustainable development in China. This paper explores the impacts of China’s recent modal shift policy on carbon emissions, summaries experience from China, and points out future development directions. The paper first compares the different energy consumption and carbon emissions between the road freight transport and the railways in China, and then has a scenarios analysis on China’s energy consumption and carbon emissions of the transport sector in 2025. The latest progress and major problems of modal shift policy in China are presented, and a methodology to address this problem is also proposed. Based on the methodology, we compare the benefits and costs brought by modal shift policy in the case of Ordos, Inner Mongolia. Based on the results, principles and suggestions on how to design and implement more efficient modal shift policy are proposed. We find that road transport is the most polluting mode among various modes of transport, and the railway transport has the least carbon emissions. Furthermore, the modal shift policy plays a positive role in carbon emissions, but the costs caused by the policy are higher than the benefits at some circumstances. Moreover, to achieve the sustainable modal shift policy by relying on the feasible market mechanism, together with scientific and effective regulation, instead of “one size for all” administrative policy, are likely the way forward.

Suggested Citation

  • Shuling Chen & Jianhong Wu & Yueqi Zong, 2020. "The Impact of the Freight Transport Modal Shift Policy on China’s Carbon Emissions Reduction," Sustainability, MDPI, vol. 12(2), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:583-:d:308108
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/2/583/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/2/583/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    2. Marsden, Greg & Rye, Tom, 2010. "The governance of transport and climate change," Journal of Transport Geography, Elsevier, vol. 18(6), pages 669-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gandhi, Nevil & Kant, Ravi & Thakkar, Jitesh, 2022. "Sustainable performance assessment of rail freight transportation using triple bottom line approach: An application to Indian Railways," Transport Policy, Elsevier, vol. 128(C), pages 254-273.
    2. Sara Rogerson & Vendela Santén & Uni Sallnäs, 2021. "The Influence of Power and Trust on the Initiation and Duration of Modal Shift Solutions," Sustainability, MDPI, vol. 13(7), pages 1-19, March.
    3. Tomasz Neumann, 2021. "Comparative Analysis of Long-Distance Transportation with the Example of Sea and Rail Transport," Energies, MDPI, vol. 14(6), pages 1-13, March.
    4. Kang, Zhaoxia & Nash, Chris A. & Smith, Andrew S.J. & Wu, Jianhong, 2021. "Railway access charges in China: A comparison with Europe and Japan," Transport Policy, Elsevier, vol. 108(C), pages 11-20.
    5. Xiaoyong Wei & Huaixiang Wang, 2025. "Research on China’s Railway Freight Pricing Under Carbon Emissions Trading Mechanism," Sustainability, MDPI, vol. 17(12), pages 1-31, June.
    6. Cavallaro, Federico & Costa, Carlo & De Biasi, Ilaria & Fabio, Alberto & Nocera, Silvio, 2024. "Sustainable pathways for mitigating externalities in long-distance terrestrial transport," Transport Policy, Elsevier, vol. 154(C), pages 207-221.
    7. Willem Haanstra & Alberto Martinetti & Jan Braaksma & Leo van Dongen, 2020. "Design of a Framework for Integrating Environmentally Sustainable Design Principles and Requirements in Train Modernization Projects," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    8. Jiewei Li & Ling Jin & Han Deng & Lin Yang, 2023. "Review on Decarbonizing the Transportation Sector in China: Overview, Analysis, and Perspectives," Papers 2310.00613, arXiv.org.
    9. Zhao, Chuyun & Tang, Jinjun & Gao, Wenyuan & Zeng, Yu & Li, Zhitao, 2024. "Many-objective optimization of multi-mode public transportation under carbon emission reduction," Energy, Elsevier, vol. 286(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chien-Liang Chiu & I-Fan Hsiao & Lily Chang, 2023. "Overviewing Global Surface Temperature Changes Regarding CO 2 Emission, Population Density, and Energy Consumption in the Industry: Policy Suggestions," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    2. Thomas Vanoutrive & Ann Verhetsel, 2013. "Classifying transport studies using three dimensions of society: market structure, sustainability and decision making," Chapters, in: Thomas Vanoutrive & Ann Verhetsel (ed.), Smart Transport Networks, chapter 1, pages 1-8, Edward Elgar Publishing.
    3. Jasmina Ćetković & Slobodan Lakić & Angelina Živković & Miloš Žarković & Radoje Vujadinović, 2021. "Economic Analysis of Measures for GHG Emission Reduction," Sustainability, MDPI, vol. 13(4), pages 1-25, February.
    4. Ali Enes Dingil & Federico Rupi & Domokos Esztergár-Kiss, 2021. "An Integrative Review of Socio-Technical Factors Influencing Travel Decision-Making and Urban Transport Performance," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Pei Chen & Mohamad Hisyam Selamat & See-Nie Lee, 2025. "The Impact of Policy Incentives on the Purchase of Electric Vehicles by Consumers in China’s First-Tier Cities: Moderate-Mediate Analysis," Sustainability, MDPI, vol. 17(12), pages 1-17, June.
    6. Vaclovas Miskinis & Arvydas Galinis & Inga Konstantinaviciute & Viktorija Bobinaite & Jarek Niewierowicz & Eimantas Neniskis & Egidijus Norvaisa & Dalius Tarvydas, 2025. "Key Determinants of Energy Intensity and Greenhouse Gas Emission Savings in Commercial and Public Services in the Baltic States," Energies, MDPI, vol. 18(3), pages 1-26, February.
    7. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    8. Alfredo Alvarez-Diazcomas & Adyr A. Estévez-Bén & Juvenal Rodríguez-Reséndiz & Miguel-Angel Martínez-Prado & Roberto V. Carrillo-Serrano & Suresh Thenozhi, 2020. "A Review of Battery Equalizer Circuits for Electric Vehicle Applications," Energies, MDPI, vol. 13(21), pages 1-29, October.
    9. Huiling Wang & Jiaxin Luo & Mengtian Zhang & Yue Ling, 2022. "The Impact of Transportation Restructuring on the Intensity of Greenhouse Gas Emissions: Empirical Data from China," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    10. Foda, Ahmed & Abdelaty, Hatem & Mohamed, Moataz & El-Saadany, Ehab, 2023. "A generic cost-utility-emission optimization for electric bus transit infrastructure planning and charging scheduling," Energy, Elsevier, vol. 277(C).
    11. Hirschhorn, Fabio & Paulsson, Alexander & Sørensen, Claus H. & Veeneman, Wijnand, 2019. "Public transport regimes and mobility as a service: Governance approaches in Amsterdam, Birmingham, and Helsinki," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 178-191.
    12. Zhao, Chuyun & Tang, Jinjun & Gao, Wenyuan & Zeng, Yu & Li, Zhitao, 2024. "Many-objective optimization of multi-mode public transportation under carbon emission reduction," Energy, Elsevier, vol. 286(C).
    13. Sheng Xu & Jingxue Chen & Demei Wen, 2023. "Research on the Impact of Carbon Trading Policy on the Structural Upgrading of Marine Industry," Sustainability, MDPI, vol. 15(9), pages 1-17, April.
    14. Shibayama, Takeru & Laa, Barbara, 2024. "Sustainable Mobility Guarantee: Developing the concept from a transport planning perspective," Transport Policy, Elsevier, vol. 155(C), pages 287-299.
    15. Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
    16. Khan Rabnawaz & Kong YuSheng, 2020. "Effects of Energy Consumption on GDP: New Evidence of 24 Countries on Their Natural Resources and Production of Electricity," Ekonomika (Economics), Sciendo, vol. 99(1), pages 26-49, June.
    17. Pengyu Chen & Zhongzhu Chu & Yuhao Zhao & Yiming Li, 2025. "Is urban innovation capacity shaping new models of economic development? Evidence from the circular economy," Sustainable Development, John Wiley & Sons, Ltd., vol. 33(1), pages 758-770, February.
    18. Abdul Hayy Haziq Mohamad & Muhamad Rias K. V. Zainuddin & Rossazana Ab-Rahim, 2023. "Does Renewable Energy Transition in the USA and China Overcome Environmental Degradation?," International Journal of Energy Economics and Policy, Econjournals, vol. 13(6), pages 234-243, November.
    19. Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.
    20. Olja Čokorilo & Ivan Ivković & Snežana Kaplanović, 2019. "Prediction of Exhaust Emission Costs in Air and Road Transportation," Sustainability, MDPI, vol. 11(17), pages 1-18, August.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:2:p:583-:d:308108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.