IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3064-d799579.html
   My bibliography  Save this article

Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality

Author

Listed:
  • Yanming Sun

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
    International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)

  • Shixian Liu

    (School of Transportation, Shandong University of Science and Technology, Qingdao 266590, China)

  • Lei Li

    (International Cooperation Center of National Development and Reform Commission, Beijing 100038, China)

Abstract

Transportation carbon emission reduction has become an important driving point for China to achieve carbon peak and carbon neutrality. Based on the three-dimensional grey correlation analysis model, taking the five factors affecting transportation carbon emissions, namely, population, GDP, tertiary industry, energy structure and logistics scale, as the research object, the transportation carbon emissions of China’s low-carbon pilot and nonpilot provinces from 2010 to 2019 are calculated based on the Intergovernmental Panel on Climate Change (IPCC) carbon emission accounting method. The time series grey correlation degree and regional grey correlation degree of each influencing factor and traffic carbon emission are obtained using the provincial data, so as to provide policy suggestions for China to achieve the goal of “carbon peak and carbon neutrality” in the field of transportation. The results show that the descending order of the five influencing factors on transportation carbon emissions is: energy structure, logistics scale, population, GDP and tertiary industry. From 2010 to 2019, the time series grey correlation degree between the five influencing factors and transportation carbon emissions shows a fluctuating downward trend, but the impact of demographic factors has become more and more obvious in the past two years; According to the difference of grey correlation degree in different regions, the traffic development of various provinces in China is different, so it is necessary to formulate relevant policies individually.

Suggested Citation

  • Yanming Sun & Shixian Liu & Lei Li, 2022. "Grey Correlation Analysis of Transportation Carbon Emissions under the Background of Carbon Peak and Carbon Neutrality," Energies, MDPI, vol. 15(9), pages 1-24, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3064-:d:799579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3064/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3064/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lo, Pak Lam & Martini, Gianmaria & Porta, Flavio & Scotti, Davide, 2020. "The determinants of CO2 emissions of air transport passenger traffic: An analysis of Lombardy (Italy)," Transport Policy, Elsevier, vol. 91(C), pages 108-119.
    2. Talbi, Besma, 2017. "CO2 emissions reduction in road transport sector in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 232-238.
    3. Ang, B. W., 2005. "The LMDI approach to decomposition analysis: a practical guide," Energy Policy, Elsevier, vol. 33(7), pages 867-871, May.
    4. Tian, Lixin & Jin, Rulei, 2012. "Theoretical exploration of carbon emissions dynamic evolutionary system and evolutionary scenario analysis," Energy, Elsevier, vol. 40(1), pages 376-386.
    5. Venturini, Giada & Karlsson, Kenneth & Münster, Marie, 2019. "Impact and effectiveness of transport policy measures for a renewable-based energy system," Energy Policy, Elsevier, vol. 133(C).
    6. Xu, Shi-Chun & He, Zheng-Xia & Long, Ru-Yin, 2014. "Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI," Applied Energy, Elsevier, vol. 127(C), pages 182-193.
    7. Gambhir, Ajay & Tse, Lawrence K.C. & Tong, Danlu & Martinez-Botas, Ricardo, 2015. "Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis," Applied Energy, Elsevier, vol. 157(C), pages 905-917.
    8. Yong Wang & Yu Zhou & Lin Zhu & Fei Zhang & Yingchun Zhang, 2018. "Influencing Factors and Decoupling Elasticity of China’s Transportation Carbon Emissions," Energies, MDPI, vol. 11(5), pages 1-29, May.
    9. Byers, Edward A. & Gasparatos, Alexandros & Serrenho, André C., 2015. "A framework for the exergy analysis of future transport pathways: Application for the United Kingdom transport system 2010–2050," Energy, Elsevier, vol. 88(C), pages 849-862.
    10. Hickman, Robin & Banister, David, 2007. "Looking over the horizon: Transport and reduced CO2 emissions in the UK by 2030," Transport Policy, Elsevier, vol. 14(5), pages 377-387, September.
    11. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    12. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    13. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    14. Changyou Zhang & Wenyu Zhang & Weina Luo & Xue Gao & Bingchen Zhang, 2021. "Analysis of Influencing Factors of Carbon Emissions in China’s Logistics Industry: A GDIM-Based Indicator Decomposition," Energies, MDPI, vol. 14(18), pages 1-23, September.
    15. Salvucci, Raffaele & Gargiulo, Maurizio & Karlsson, Kenneth, 2019. "The role of modal shift in decarbonising the Scandinavian transport sector: Applying substitution elasticities in TIMES-Nordic," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Tang, Bao-Jun & Li, Xiao-Yi & Yu, Biying & Wei, Yi-Ming, 2019. "Sustainable development pathway for intercity passenger transport: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanming Sun & Yile Yang & Shixian Liu & Qingli Li, 2023. "Research on Transportation Carbon Emission Peak Prediction and Judgment System in China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    2. Zhengyang Li & Yukuan Wang & Yafeng Lu & Shravan Kumar Ghimire, 2023. "Spatio-Temporal Evolution of Carbon Emission in China’s Tertiary Industry: A Decomposition of Influencing Factors from the Perspective of Energy-Industry-Consumption," Energies, MDPI, vol. 16(15), pages 1-18, August.
    3. Jingyu Ji & Hang Lin, 2022. "Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-35, September.
    4. Quan Wu & Wei Cheng & Zuoxiong Zheng & Guangjun Zhang & Haicheng Xiao & Chuan Wen, 2023. "Research on the Carbon Credit Exchange Strategy for Scrap Vehicles Based on Evolutionary Game Theory," IJERPH, MDPI, vol. 20(3), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mousavi, Babak & Lopez, Neil Stephen A. & Biona, Jose Bienvenido Manuel & Chiu, Anthony S.F. & Blesl, Markus, 2017. "Driving forces of Iran's CO2 emissions from energy consumption: An LMDI decomposition approach," Applied Energy, Elsevier, vol. 206(C), pages 804-814.
    2. Zbigniew Gołaś, 2022. "Changes in Energy-Related Carbon Dioxide Emissions of the Agricultural Sector in Poland from 2000 to 2019," Energies, MDPI, vol. 15(12), pages 1-18, June.
    3. Wang, Miao & Feng, Chao, 2018. "Decomposing the change in energy consumption in China's nonferrous metal industry: An empirical analysis based on the LMDI method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2652-2663.
    4. Linwei Ma & Chinhao Chong & Xi Zhang & Pei Liu & Weiqi Li & Zheng Li & Weidou Ni, 2018. "LMDI Decomposition of Energy-Related CO 2 Emissions Based on Energy and CO 2 Allocation Sankey Diagrams: The Method and an Application to China," Sustainability, MDPI, vol. 10(2), pages 1-37, January.
    5. Li, Hao & Zhao, Yuhuan & Qiao, Xiaoyong & Liu, Ya & Cao, Ye & Li, Yue & Wang, Song & Zhang, Zhonghua & Zhang, Yongfeng & Weng, Jianfeng, 2017. "Identifying the driving forces of national and regional CO2 emissions in China: Based on temporal and spatial decomposition analysis models," Energy Economics, Elsevier, vol. 68(C), pages 522-538.
    6. Zhang, Pan & Wang, Huan, 2022. "Do provincial energy policies and energy intensity targets help reduce CO2 emissions? Evidence from China," Energy, Elsevier, vol. 245(C).
    7. Ang, B.W., 2015. "LMDI decomposition approach: A guide for implementation," Energy Policy, Elsevier, vol. 86(C), pages 233-238.
    8. Wang, Miao & Feng, Chao, 2018. "Using an extended logarithmic mean Divisia index approach to assess the roles of economic factors on industrial CO2 emissions of China," Energy Economics, Elsevier, vol. 76(C), pages 101-114.
    9. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    10. Lin, Boqiang & Kuang, Yunming, 2020. "Natural gas subsidies in the industrial sector in China: National and regional perspectives," Applied Energy, Elsevier, vol. 260(C).
    11. Ang, B.W. & Goh, Tian, 2019. "Index decomposition analysis for comparing emission scenarios: Applications and challenges," Energy Economics, Elsevier, vol. 83(C), pages 74-87.
    12. Guang, Fengtao & Wen, Le & Sharp, Basil, 2022. "Energy efficiency improvements and industry transition: An analysis of China's electricity consumption," Energy, Elsevier, vol. 244(PA).
    13. Jaruwan Chontanawat & Paitoon Wiboonchutikula & Atinat Buddhivanich, 2020. "Decomposition Analysis of the Carbon Emissions of the Manufacturing and Industrial Sector in Thailand," Energies, MDPI, vol. 13(4), pages 1-23, February.
    14. Wen, Hong-xing & Chen, Zhe & Yang, Qian & Liu, Jin-yi & Nie, Pu-yan, 2022. "Driving forces and mitigating strategies of CO2 emissions in China: A decomposition analysis based on 38 industrial sub-sectors," Energy, Elsevier, vol. 245(C).
    15. Jie-fang Dong & Qiang Wang & Chun Deng & Xing-min Wang & Xiao-lei Zhang, 2016. "How to Move China toward a Green-Energy Economy: From a Sector Perspective," Sustainability, MDPI, vol. 8(4), pages 1-18, April.
    16. Xianrui Liao & Wei Yang & Yichen Wang & Junnian Song, 2019. "Uncovering Variations, Determinants, and Disparities of Multisector-Level Final Energy Use of Industries Across Cities," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    17. Rui Jiang & Peng Wu & Chengke Wu, 2022. "Driving Factors behind Energy-Related Carbon Emissions in the U.S. Road Transport Sector: A Decomposition Analysis," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    18. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    19. Yanming Sun & Yile Yang & Shixian Liu & Qingli Li, 2023. "Research on Transportation Carbon Emission Peak Prediction and Judgment System in China," Sustainability, MDPI, vol. 15(20), pages 1-17, October.
    20. Jiang, Jingjing & Ye, Bin & Xie, Dejun & Li, Ji & Miao, Lixin & Yang, Peng, 2017. "Sector decomposition of China’s national economic carbon emissions and its policy implication for national ETS development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 855-867.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3064-:d:799579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.