IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i23p9908-d451788.html
   My bibliography  Save this article

Prioritization of Cartagena Coastal Military Batteries to Transform Them into Scientific, Tourist and Cultural Places of Interest: A GIS-MCDM Approach

Author

Listed:
  • J. M. Sánchez-Lozano

    (Centro Universitario de la Defensa de San Javier, Academia General del Aire, Universidad Politécnica de Cartagena (UPCT), 30720 Murcia, Spain)

  • F. J. Salmerón-Vera

    (Centro Universitario de la Defensa de San Javier, Academia General del Aire, Universidad Politécnica de Cartagena (UPCT), 30720 Murcia, Spain)

  • C. Ros-Casajús

    (Centro Universitario de la Defensa de San Javier, Academia General del Aire, Universidad Politécnica de Cartagena (UPCT), 30720 Murcia, Spain)

Abstract

This study presents a combination of multi-criteria decision-making (MCDM) methodologies with geographic information systems (GIS) to carry out a prioritization of obsolete military coastal batteries with the aim of transforming them into touristic, scientific, and cultural places of interest. The study area is located in the Municipality of Cartagena, in Southeast Spain. Such a prioritization requires taking into account transport criteria (distance to roads or train stations), infrastructure criteria (distance to electrical grids or distance to water tanks), touristic or scientific criteria (distance to towns, beaches, archaeological sites, assets of cultural interest, etc.), and orography criteria (area, altitude, and slope of each battery). Therefore, this decision problem involves a set of alternatives (coastal military batteries) to be prioritized based on a group of criteria that should be considered. To tackle this, GIS software is used to provide the attribute table of alternatives and criteria (decision matrix), and the proposed decision problem is solved through a combination of MCDM methodologies based on the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and Analytic Hierarchy Process (AHP) techniques. The AHP approach is applied to determine the weights of the criteria whilst the TOPSIS method provides a ranking of alternatives in order to obtain a prioritization.

Suggested Citation

  • J. M. Sánchez-Lozano & F. J. Salmerón-Vera & C. Ros-Casajús, 2020. "Prioritization of Cartagena Coastal Military Batteries to Transform Them into Scientific, Tourist and Cultural Places of Interest: A GIS-MCDM Approach," Sustainability, MDPI, vol. 12(23), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9908-:d:451788
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/23/9908/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/23/9908/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Forman, Ernest H., 1990. "Random indices for incomplete pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 48(1), pages 153-155, September.
    2. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    3. Bertrand Mareschal & Jean Pierre Brans & Philippe Vincke, 1984. "Prométhée: a new family of outranking methods in multicriteria analysis," ULB Institutional Repository 2013/9305, ULB -- Universite Libre de Bruxelles.
    4. Razieh Mosadeghi & Jan Warnken & Rodger Tomlinson & Hamid Mirfenderesk, 2013. "Uncertainty analysis in the application of multi-criteria decision-making methods in Australian strategic environmental decisions," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 56(8), pages 1097-1124, October.
    5. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    6. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    7. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    8. Guido C. Guerrero-Liquet & Juan Miguel Sánchez-Lozano & María Socorro García-Cascales & María Teresa Lamata & José Luis Verdegay, 2016. "Decision-Making for Risk Management in Sustainable Renewable Energy Facilities: A Case Study in the Dominican Republic," Sustainability, MDPI, vol. 8(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2016. "GIS-based onshore wind farm site selection using Fuzzy Multi-Criteria Decision Making methods. Evaluating the case of Southeastern Spain," Applied Energy, Elsevier, vol. 171(C), pages 86-102.
    2. Shao, Meng & Zhao, Yuanxu & Sun, Jinwei & Han, Zhixin & Shao, Zhuxiao, 2023. "A decision framework for tidal current power plant site selection based on GIS-MCDM: A case study in China," Energy, Elsevier, vol. 262(PB).
    3. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    4. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    5. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    6. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    7. Zheng Yuan & Baohua Wen & Cheng He & Jin Zhou & Zhonghua Zhou & Feng Xu, 2022. "Application of Multi-Criteria Decision-Making Analysis to Rural Spatial Sustainability Evaluation: A Systematic Review," IJERPH, MDPI, vol. 19(11), pages 1-31, May.
    8. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    9. Lin, Sheng-Hau & Huang, Xianjin & Fu, Guole & Chen, Jia-Tsong & Zhao, Xiaofeng & Li, Jia-Hsuan & Tzeng, Gwo-Hshiung, 2021. "Evaluating the sustainability of urban renewal projects based on a model of hybrid multiple-attribute decision-making," Land Use Policy, Elsevier, vol. 108(C).
    10. Łatuszyńska Anna, 2014. "Multiple-Criteria Decision Analysis Using Topsis Method For Interval Data In Research Into The Level Of Information Society Development," Folia Oeconomica Stetinensia, Sciendo, vol. 13(2), pages 1-14, July.
    11. Ustaoglu, E. & Sisman, S. & Aydınoglu, A.C., 2021. "Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques," Ecological Modelling, Elsevier, vol. 455(C).
    12. Martina Kuncova & Jana Seknickova, 2022. "Two-stage weighted PROMETHEE II with results’ visualization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 547-571, June.
    13. Majda Ivić & Jelena Kilić & Katarina Rogulj & Nikša Jajac, 2020. "Decision Support to Sustainable Parking Management—Investment Planning through Parking Fines to Improve Pedestrian Flows," Sustainability, MDPI, vol. 12(22), pages 1-19, November.
    14. Peyman Mohammady & Amin Amid, 2011. "Integrated fuzzy AHP and fuzzy VIKOR model for supplier selection in an agile and modular virtual enterprise," Fuzzy Information and Engineering, Springer, vol. 3(4), pages 411-431, December.
    15. Styliani Karamountzou & Dimitra G. Vagiona, 2023. "Suitability and Sustainability Assessment of Existing Onshore Wind Farms in Greece," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    16. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    17. A. Psomas & I. Vryzidis & A. Spyridakos & M. Mimikou, 2021. "MCDA approach for agricultural water management in the context of water–energy–land–food nexus," Operational Research, Springer, vol. 21(1), pages 689-723, March.
    18. Willem Brauers, 2013. "Multi-objective seaport planning by MOORA decision making," Annals of Operations Research, Springer, vol. 206(1), pages 39-58, July.
    19. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    20. Lai, Po‐Lin & Potter, Andrew & Beynon, Malcolm & Beresford, Anthony, 2015. "Evaluating the efficiency performance of airports using an integrated AHP/DEA-AR technique," Transport Policy, Elsevier, vol. 42(C), pages 75-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:23:p:9908-:d:451788. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.