IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i17p7208-d408390.html
   My bibliography  Save this article

Performance and Intrusiveness of Crowdshipping Systems: An Experiment with Commuting Cyclists in The Netherlands

Author

Listed:
  • Xiao Lin

    (Department of Transport and Planning, Delft University of Technology, 2628 CN Delft, The Netherlands)

  • Yoshinari Nishiki

    (Technology of Future Utopia (TOFU), 3022 BH Rotterdam, The Netherlands)

  • Lóránt A. Tavasszy

    (Department of Transport and Planning, Delft University of Technology, 2628 CN Delft, The Netherlands)

Abstract

Crowdshipping systems are receiving increasing attention in both industry and academia. Different aspects of crowdshipping (summarized as platform, supply, and demand) are investigated in research. To date, the mutual influence of crowdshipping platform design and its supply side (with participating crowdshippers) has not yet been thoroughly investigated. This paper addresses this mutual influence by investigating the relations between shipping performance and intrusiveness to daily trips of commuters who voluntarily act as cycle couriers. In an experiment in The Hague, cyclists were asked to transport small parcels during a simulated daily commuting routine. The grid of commuting trips acted as a relay network to move parcels to their individual destinations. All the movements of the parcels were recorded by GPS trackers. The analysis indicates that a higher degree of complexity of rules in crowdshipping systems can lead to better system performance. Meanwhile, it also imposes higher intrusiveness, as participants need to deviate more from their routines of daily, uninterrupted trips. The case also suggests that a well-designed crowdshipping system can increase system performance without having to ask too much from crowdshippers. This study provides reference to better design such systems, and opens up directions for further research that can be used to provide thorough guidelines for the implementation of crowdshipping platforms.

Suggested Citation

  • Xiao Lin & Yoshinari Nishiki & Lóránt A. Tavasszy, 2020. "Performance and Intrusiveness of Crowdshipping Systems: An Experiment with Commuting Cyclists in The Netherlands," Sustainability, MDPI, vol. 12(17), pages 1-14, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7208-:d:408390
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/17/7208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/17/7208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rocío González-Sánchez & Davide Settembre-Blundo & Anna Maria Ferrari & Fernando E. García-Muiña, 2020. "Main Dimensions in the Building of the Circular Supply Chain: A Literature Review," Sustainability, MDPI, vol. 12(6), pages 1-25, March.
    2. Zhangyuan He & Hans-Dietrich Haasis, 2020. "A Theoretical Research Framework of Future Sustainable Urban Freight Transport for Smart Cities," Sustainability, MDPI, vol. 12(5), pages 1-28, March.
    3. Devari, Aashwinikumar & Nikolaev, Alexander G. & He, Qing, 2017. "Crowdsourcing the last mile delivery of online orders by exploiting the social networks of retail store customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 105-122.
    4. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    5. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," International Journal of Production Research, Taylor & Francis Journals, vol. 55(7), pages 1833-1844, April.
    6. Chao Chen & Shenle Pan & Zhu Wang & Ray Y. Zhong, 2017. "Using taxis to collect citywide E-commerce reverse flows: a crowdsourcing solution," Post-Print hal-01300487, HAL.
    7. Eric Ballot & Olivier Gobet & Benoit Montreuil, 2012. "Physical Internet Enabled Open Hub Network Design for Distributed Networked Operations," Post-Print hal-00696956, HAL.
    8. Nayara Louise de Carvalho & José Geraldo Vidal Vieira & Paula Nakamura da Fonseca & Maxim A. Dulebenets, 2020. "A Multi-Criteria Structure for Sustainable Implementation of Urban Distribution Centers in Historical Cities," Sustainability, MDPI, vol. 12(14), pages 1-15, July.
    9. Xinran Li & Haoxuan Kan & Xuedong Hua & Wei Wang, 2020. "Simulation-Based Electric Vehicle Sustainable Routing with Time-Dependent Stochastic Information," Sustainability, MDPI, vol. 12(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cebeci, Merve Seher & Tapia, Rodrigo Javier & Kroesen, Maarten & de Bok, Michiel & Tavasszy, Lóránt, 2023. "The effect of trust on the choice for crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    2. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Zhou & Yanping Chen & Yi Jing & Youwei Jiang, 2021. "Evolutionary Game Analysis on Last Mile Delivery Resource Integration—Exploring the Behavioral Strategies between Logistics Service Providers, Property Service Companies and Customers," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    2. Yıldız, Barış, 2021. "Package routing problem with registered couriers and stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    3. Mashalah, Heider Al & Hassini, Elkafi & Gunasekaran, Angappa & Bhatt (Mishra), Deepa, 2022. "The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    4. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    5. Bathke, Henrik & Hartmann, Evi, 2021. "Accepting a crowdsourced delivery - A choice-based conjoint analysis," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 65-95, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    6. Nieto-Isaza, Santiago & Fontaine, Pirmin & Minner, Stefan, 2022. "The value of stochastic crowd resources and strategic location of mini-depots for last-mile delivery: A Benders decomposition approach," Transportation Research Part B: Methodological, Elsevier, vol. 157(C), pages 62-79.
    7. Seghezzi, Arianna & Siragusa, Chiara & Tumino, Angela & Mangiaracina, Riccardo, 2021. "Investigating the return cost for B2C e-commerce," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Jahn, Carlos & Kersten, Wolfgang & Ringle, Christian M. (ed.), Adapting to the Future: Maritime and City Logistics in the Context of Digitalization and Sustainability. Proceedings of the Hamburg International Conf, volume 32, pages 169-192, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    8. Wang, Xin & Huang, George Q., 2021. "When and how to share first-mile parcel collection service," European Journal of Operational Research, Elsevier, vol. 288(1), pages 153-169.
    9. Orenstein, Ido & Raviv, Tal, 2022. "Parcel delivery using the hyperconnected service network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Fessler, Andreas & Thorhauge, Mikkel & Mabit, Stefan & Haustein, Sonja, 2022. "A public transport-based crowdshipping concept as a sustainable last-mile solution: Assessing user preferences with a stated choice experiment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 210-223.
    11. Guo, Chaojie & Thompson, Russell G. & Foliente, Greg & Kong, Xiang T.R., 2021. "An auction-enabled collaborative routing mechanism for omnichannel on-demand logistics through transshipment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    12. Wenjie Wang & Lei Xie, 2022. "Optimal pricing of crowdsourcing logistics services with social delivery capacity," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1447-1469, July.
    13. Alireza Ermagun & Ali Shamshiripour & Amanda Stathopoulos, 2020. "Performance analysis of crowd-shipping in urban and suburban areas," Transportation, Springer, vol. 47(4), pages 1955-1985, August.
    14. Lafkihi, Mariam & Pan, Shenle & Ballot, Eric, 2019. "Freight transportation service procurement: A literature review and future research opportunities in omnichannel E-commerce," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 348-365.
    15. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    16. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    17. Jeff Mangers & Meysam Minoufekr & Peter Plapper & Sri Kolla, 2021. "An Innovative Strategy Allowing a Holistic System Change towards Circular Economy within Supply-Chains," Energies, MDPI, vol. 14(14), pages 1-17, July.
    18. Joanna Oleśków-Szłapka & Irena Pawłyszyn & Joanna Przybylska, 2020. "Sustainable Urban Mobility in Poznan and Oslo-Actual State and Development Perspectives," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    19. Laura Virta & Riikka Räisänen, 2021. "Three Futures Scenarios of Policy Instruments for Sustainable Textile Production and Consumption as Portrayed in the Finnish News Media," Sustainability, MDPI, vol. 13(2), pages 1-16, January.
    20. Fink, Alexander A. & Klöckner, Maximilian & Räder, Tobias & Wagner, Stephan M., 2022. "Supply chain management accelerators: Types, objectives, and key design features," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:17:p:7208-:d:408390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.