IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i4p1072-d207071.html
   My bibliography  Save this article

Land Use/Cover Change Effects on River Basin Hydrological Processes Based on a Modified Soil and Water Assessment Tool: A Case Study of the Heihe River Basin in Northwest China’s Arid Region

Author

Listed:
  • Xin Jin

    (Key Laboratory of Physical Geography and Environmental Processes, School of Geographical Science, Qinghai Normal University, Xining 810016, China)

  • Yanxiang Jin

    (Key Laboratory of Physical Geography and Environmental Processes, School of Geographical Science, Qinghai Normal University, Xining 810016, China)

  • Xufeng Mao

    (Key Laboratory of Physical Geography and Environmental Processes, School of Geographical Science, Qinghai Normal University, Xining 810016, China)

Abstract

Land use/cover change (LUCC) affects canopy interception, soil infiltration, land-surface evapotranspiration (ET), and other hydrological parameters during rainfall, which in turn affects the hydrological regimes and runoff mechanisms of river basins. Physically based distributed (or semi-distributed) models play an important role in interpreting and predicting the effects of LUCC on the hydrological processes of river basins. However, conventional distributed (or semi-distributed) models, such as the soil and water assessment tool (SWAT), generally assume that no LUCC takes place during the simulation period to simplify the computation process. When applying the SWAT, the subject river basin is subdivided into multiple hydrologic response units (HRUs) based on the land use/cover type, soil type, and surface slope. The land use/cover type is assumed to remain constant throughout the simulation period, which limits the ability to interpret and predict the effects of LUCC on hydrological processes in the subject river basin. To overcome this limitation, a modified SWAT (LU-SWAT) was developed that incorporates annual land use/cover data to simulate LUCC effects on hydrological processes under different climatic conditions. To validate this approach, this modified model and two other models (one model based on the 2000 land use map, called SWAT 1; one model based on the 2009 land use map, called SWAT 2) were applied to the middle reaches of the Heihe River in northwest China; this region is most affected by human activity. Study results indicated that from 1990 to 2009, farmland, forest, and urban areas all showed increasing trends, while grassland and bare land areas showed decreasing trends. Primary land use changes in the study area were from grassland to farmland and from bare land to forest. During this same period, surface runoff, groundwater runoff, and total water yield showed decreasing trends, while lateral flow and ET volume showed increasing trends under dry, wet, and normal conditions. Changes in the various hydrological parameters were most evident under dry and normal climatic conditions. Based on the existing research of the middle reaches of the Heihe River, and a comparison of the other two models from this study, the modified LU-SWAT developed in this study outperformed the conventional SWAT when predicting the effects of LUCC on the hydrological processes of river basins.

Suggested Citation

  • Xin Jin & Yanxiang Jin & Xufeng Mao, 2019. "Land Use/Cover Change Effects on River Basin Hydrological Processes Based on a Modified Soil and Water Assessment Tool: A Case Study of the Heihe River Basin in Northwest China’s Arid Region," Sustainability, MDPI, vol. 11(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1072-:d:207071
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/4/1072/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/4/1072/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    2. Ling Zhang & Zhuotong Nan & Wenjun Yu & Yingchun Ge, 2015. "Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(13), pages 4701-4717, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huashan Xu & Yufen Ren & Hua Zheng & Zhiyun Ouyang & Bo Jiang, 2020. "Analysis of Runoff Trends and Drivers in the Haihe River Basin, China," IJERPH, MDPI, vol. 17(5), pages 1-14, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    2. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    3. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    4. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    5. Lucia de Strasser, "undated". "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    6. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    7. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    8. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    9. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    10. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    11. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    12. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    13. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    14. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    15. Chang, Yen-Chiang & Wang, Nannan, 2010. "Environmental regulations and emissions trading in China," Energy Policy, Elsevier, vol. 38(7), pages 3356-3364, July.
    16. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    17. Basanta Paudel & Yili Zhang & Jianzhong Yan & Raju Rai & Lanhui Li & Xue Wu & Prem Sagar Chapagain & Narendra Raj Khanal, 2020. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies," Climatic Change, Springer, vol. 158(3), pages 485-502, February.
    18. José Antonio Rodriguez Martin & Juan Dios Jiménez Aguilera & José María Martín Martín & José Antonio Salinas Fernández, 2018. "Crisis in the Horn of Africa: Measurement of Progress Towards Millennium Development Goals," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 499-514, January.
    19. Sèyi Fridaïus Ulrich Vanvanhossou & Luc Hippolyte Dossa & Sven König, 2021. "Sustainable Management of Animal Genetic Resources to Improve Low-Input Livestock Production: Insights into Local Beninese Cattle Populations," Sustainability, MDPI, vol. 13(17), pages 1-20, September.
    20. Boris O. K. Lokonon & Aly A. Mbaye, 2019. "Implications of Climate-Related Factors on Living Standards: Evidence from Sub-Saharan Africa," Economics Bulletin, AccessEcon, vol. 39(2), pages 1404-1417.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:4:p:1072-:d:207071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.