IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i24p7136-d297353.html
   My bibliography  Save this article

Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite

Author

Listed:
  • Haihong Song

    (Department of Civil and Environmental Engineering, Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou 515063, China)

  • Jianming Wang

    (Department of Civil and Environmental Engineering, Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou 515063, China)

  • Ankit Garg

    (Department of Civil and Environmental Engineering, Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou 515063, China)

  • Xuankai Lin

    (Department of Civil and Environmental Engineering, Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou 515063, China)

  • Qian Zheng

    (Department of Civil and Environmental Engineering, Guangdong Engineering Center for Structure Safety and Health Monitoring, Shantou University, Shantou 515063, China)

  • Susmita Sharma

    (Department of Civil Engineering, National Institute of Technology, Laitumkhrah Shillong 793003, Meghalaya, India)

Abstract

Previous studies for removal of ammonium from wastewater were mainly conducted using biochars produced from agricultural residue. Feedstock type (agricultural residue, wood, animal waste, and aquatic waste), as well as pyrolysis temperature, can significantly influence biochar properties and hence its adsorption capacity. Such studies are useful in decision making for selecting biochar depending on feedstock availability and pyrolysis temperature. This study aims to explore the effects of different types of biochar (laboratory prepared novel water hyacinth and algae biochar, conventional cedar wood, rice straw, and pig manure biochar) on the adsorption kinetics for ammonium removal from wastewater. The adsorption kinetics of biochars were compared to that of commercially available clinoptilolite and interpreted with their respective physicochemical properties (SEM, FTIR, XRD). Batch tests were performed to evaluate the effects of biochars on adsorption of ammonium nitrogen at different concentrations (10 mg/L and 100 mg/L). The tests reveal that clinoptilolite has the highest adsorption capacity. Among biochars, pig manure (animal based) biochar has a higher adsorption capacity in comparison to conventional agricultural residues based biochars. The capacity of pig manure biochar under highly concentrated ammonium solution (100 mg/L) is merely 20% lower than that of clinoptilolite. Both water hyacinth and algae biochar produced at higher temperature (600 °C) show higher sorption rate and capacity (depending on the initial concentration of ammonium) for ammonium in comparison to that produced at a lower temperature (300 °C). This is likely due to an increase in porosity at higher temperatures of pyrolysis.

Suggested Citation

  • Haihong Song & Jianming Wang & Ankit Garg & Xuankai Lin & Qian Zheng & Susmita Sharma, 2019. "Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7136-:d:297353
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/24/7136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/24/7136/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanan Xiao & Shihong Yang & Junzeng Xu & Jie Ding & Xiao Sun & Zewei Jiang, 2018. "Effect of Biochar Amendment on Methane Emissions from Paddy Field under Water-Saving Irrigation," Sustainability, MDPI, vol. 10(5), pages 1-13, April.
    2. Minh-Viet Nguyen & Byeong-Kyu Lee, 2015. "Removal of Dimethyl Sulfide from Aqueous Solution Using Cost-Effective Modified Chicken Manure Biochar Produced from Slow Pyrolysis," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    3. JoungDu Shin & Eunjung Choi & EunSuk Jang & Seung Gil Hong & SangRyong Lee & Balasubramani Ravindran, 2018. "Adsorption Characteristics of Ammonium Nitrogen and Plant Responses to Biochar Pellet," Sustainability, MDPI, vol. 10(5), pages 1-1, April.
    4. Huang, Yu-Fong & Chiueh, Pei-Te & Shih, Chun-Hao & Lo, Shang-Lien & Sun, Liping & Zhong, Yuan & Qiu, Chunsheng, 2015. "Microwave pyrolysis of rice straw to produce biochar as an adsorbent for CO2 capture," Energy, Elsevier, vol. 84(C), pages 75-82.
    5. Le Qi & Hai-Dong Niu & Peng Zhou & Rui-Jie Jia & Ming Gao, 2018. "Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hui Tang & Xiaoyi Xu & Bin Wang & Chenpei Lv & Dezhi Shi, 2020. "Removal of Ammonium from Swine Wastewater Using Synthesized Zeolite from Fly Ash," Sustainability, MDPI, vol. 12(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. JoungDu Shin & SangWon Park & Changyoon Jeong, 2020. "Assessment of Agro-Environmental Impacts for Supplemented Methods to Biochar Manure Pellets during Rice ( Oryza sativa L.) Cultivation," Energies, MDPI, vol. 13(8), pages 1-14, April.
    2. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    3. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Irani, Maryam & Jacobson, Andrew T. & Gasem, Khaled A.M. & Fan, Maohong, 2018. "Facilely synthesized porous polymer as support of poly(ethyleneimine) for effective CO2 capture," Energy, Elsevier, vol. 157(C), pages 1-9.
    6. Heng Wei & Jiankun Sun & Bin Zhang & Rongzhan Liu, 2020. "Comparative Study of Cationic Dye Adsorption Using Industrial Latex Sludge with Sulfonate and Pyrolysis Treatment," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    7. Lee, Jechan & Yang, Xiao & Cho, Seong-Heon & Kim, Jae-Kon & Lee, Sang Soo & Tsang, Daniel C.W. & Ok, Yong Sik & Kwon, Eilhann E., 2017. "Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication," Applied Energy, Elsevier, vol. 185(P1), pages 214-222.
    8. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Shihong Yang & Xi Chen & Zewei Jiang & Jie Ding & Xiao Sun & Junzeng Xu, 2020. "Effects of Biochar Application on Soil Organic Carbon Composition and Enzyme Activity in Paddy Soil under Water-Saving Irrigation," IJERPH, MDPI, vol. 17(1), pages 1-17, January.
    10. Minsoo Kim & Changyoon Jeong & Minjeong Kim & Joohee Nam & Changki Shim & Joungdu Shin, 2022. "Evaluation of the Impact of Activated Biochar-Manure Compost Pellet Fertilizer on Volatile Organic Compound Emissions and Heavy Metal Saturation," IJERPH, MDPI, vol. 19(19), pages 1-12, September.
    11. Tsegaye, Bahiru & Balomajumder, Chandrajit & Roy, Partha, 2020. "Organosolv pretreatments of rice straw followed by microbial hydrolysis for efficient biofuel production," Renewable Energy, Elsevier, vol. 148(C), pages 923-934.
    12. Amar Ali Adam Hamad & Lixiao Ni & Hiba Shaghaleh & Elsayed Elsadek & Yousef Alhaj Hamoud, 2023. "Effect of Carbon Content in Wheat Straw Biochar on N 2 O and CO 2 Emissions and Pakchoi Productivity Under Different Soil Moisture Conditions," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    13. Monica Puccini & Lucia Ceccarini & Daniele Antichi & Maurizia Seggiani & Silvia Tavarini & Marisa Hernandez Latorre & Sandra Vitolo, 2018. "Hydrothermal Carbonization of Municipal Woody and Herbaceous Prunings: Hydrochar Valorisation as Soil Amendment and Growth Medium for Horticulture," Sustainability, MDPI, vol. 10(3), pages 1-16, March.
    14. Noraziah Abu Yazid & Raquel Barrena & Dimitrios Komilis & Antoni Sánchez, 2017. "Solid-State Fermentation as a Novel Paradigm for Organic Waste Valorization: A Review," Sustainability, MDPI, vol. 9(2), pages 1-28, February.
    15. Yang Liu & Xiaoyu Liu & Ni Ren & Yanfang Feng & Lihong Xue & Linzhang Yang, 2019. "Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation," IJERPH, MDPI, vol. 16(14), pages 1-10, July.
    16. Fernandez, Enara & Santamaria, Laura & Amutio, Maider & Artetxe, Maite & Arregi, Aitor & Lopez, Gartzen & Bilbao, Javier & Olazar, Martin, 2022. "Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor," Energy, Elsevier, vol. 238(PC).
    17. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    18. Dissanayake, Pavani Dulanja & Choi, Seung Wan & Igalavithana, Avanthi Deshani & Yang, Xiao & Tsang, Daniel C.W. & Wang, Chi-Hwa & Kua, Harn Wei & Lee, Ki Bong & Ok, Yong Sik, 2020. "Sustainable gasification biochar as a high efficiency adsorbent for CO2 capture: A facile method to designer biochar fabrication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    19. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Gyuhyeon Kim & Young Mo Kim & Su Min Kim & Hyun Uk Cho & Jong Moon Park, 2021. "Magnetic Steel Slag Biochar for Ammonium Nitrogen Removal from Aqueous Solution," Energies, MDPI, vol. 14(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:24:p:7136-:d:297353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.