IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i22p6377-d286489.html
   My bibliography  Save this article

Life Cycle Assessment for Transportation Infrastructure Policy Evaluation and Procurement for State and Local Governments

Author

Listed:
  • John T. Harvey

    (University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Ali A. Butt

    (University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Mark T. Lozano

    (Energy Systems, Energy and Efficiency Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Alissa Kendall

    (Department of Civil and Environmental Engineering and Energy and Efficiency Institute, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Arash Saboori

    (University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Jeremy D. Lea

    (University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Changmo Kim

    (University of California Pavement Research Center, Department of Civil and Environmental Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA)

  • Imad Basheer

    (Pavement Program, California Department of Transportation, 2389 Gateway Oaks Drive, Sacramento, CA 95833, USA)

Abstract

Climate change is one of the defining challenges of our time, and achieving mitigation targets requires urgent action to identify and implement strategies for reducing greenhouse gas (GHG) emissions. However, identifying, quantifying, and then selecting among the many possible strategies to achieve GHG reductions is difficult, especially without a standardized approach for comparison. Presenting alternatives in a mitigation supply curve is an approach that has been used previously to compare the costs and magnitude of mitigation potential for different strategies. Some of the critiques of this approach include the lack of a consequential perspective in determining mitigation and the lack of a life cycle perspective in quantifying mitigation and economic costs. This research uses the principles of consequential life cycle assessment and life cycle cost analysis to improve on the mitigation supply curve concept to support evaluation and procurement decisions for transportation infrastructure. Results from pilot studies for road infrastructure indicate that a consequential life cycle approach for mitigation supply curves is feasible and can support agency decision-making and communication regarding those decisions.

Suggested Citation

  • John T. Harvey & Ali A. Butt & Mark T. Lozano & Alissa Kendall & Arash Saboori & Jeremy D. Lea & Changmo Kim & Imad Basheer, 2019. "Life Cycle Assessment for Transportation Infrastructure Policy Evaluation and Procurement for State and Local Governments," Sustainability, MDPI, vol. 11(22), pages 1-36, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6377-:d:286489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/22/6377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/22/6377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lutsey, Nicholas P., 2008. "Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors," Institute of Transportation Studies, Working Paper Series qt5rd41433, Institute of Transportation Studies, UC Davis.
    2. Nils Hooftman & Luis Oliveira & Maarten Messagie & Thierry Coosemans & Joeri Van Mierlo, 2016. "Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting," Energies, MDPI, vol. 9(2), pages 1-24, January.
    3. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    4. Moshe Givoni & James Macmillen & David Banister & Eran Feitelson, 2013. "From Policy Measures to Policy Packages," Transport Reviews, Taylor & Francis Journals, vol. 33(1), pages 1-20, January.
    5. Pacca, Sergio & Sivaraman, Deepak & Keoleian, Gregory A., 2007. "Parameters affecting the life cycle performance of PV technologies and systems," Energy Policy, Elsevier, vol. 35(6), pages 3316-3326, June.
    6. Shayegh, Soheil & Sanchez, Daniel L. & Caldeira, Ken, 2017. "Evaluating relative benefits of different types of R&D for clean energy technologies," Energy Policy, Elsevier, vol. 107(C), pages 532-538.
    7. David D. Hsu & Patrick O’Donoughue & Vasilis Fthenakis & Garvin A. Heath & Hyung Chul Kim & Pamala Sawyer & Jun‐Ki Choi & Damon E. Turney, 2012. "Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation," Journal of Industrial Ecology, Yale University, vol. 16(s1), pages 122-135, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoshanna Saxe & Dena Kasraian, 2020. "Rethinking environmental LCA life stages for transport infrastructure to facilitate holistic assessment," Journal of Industrial Ecology, Yale University, vol. 24(5), pages 1031-1046, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    2. Vishnu S Prabhu & Shraddha Shrivastava & Kakali Mukhopadhyay, 2022. "Life Cycle Assessment of Solar Photovoltaic in India: A Circular Economy Approach," Circular Economy and Sustainability,, Springer.
    3. Ravikumar, Dwarakanath & Wender, Ben & Seager, Thomas P. & Fraser, Matthew P. & Tao, Meng, 2017. "A climate rationale for research and development on photovoltaics manufacture," Applied Energy, Elsevier, vol. 189(C), pages 245-256.
    4. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    5. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    6. Atif Ali & Theodore W. Koch & Timothy A. Volk & Robert W. Malmsheimer & Mark H. Eisenbies & Danielle Kloster & Tristan R. Brown & Nehan Naim & Obste Therasme, 2022. "The Environmental Life Cycle Assessment of Electricity Production in New York State from Distributed Solar Photovoltaic Systems," Energies, MDPI, vol. 15(19), pages 1-20, October.
    7. Nian, Victor, 2016. "Impacts of changing design considerations on the life cycle carbon emissions of solar photovoltaic systems," Applied Energy, Elsevier, vol. 183(C), pages 1471-1487.
    8. Marc Wentker & Matthew Greenwood & Jens Leker, 2019. "A Bottom-Up Approach to Lithium-Ion Battery Cost Modeling with a Focus on Cathode Active Materials," Energies, MDPI, vol. 12(3), pages 1-18, February.
    9. Saujot, Mathieu & Lefèvre, Benoit, 2016. "The next generation of urban MACCs. Reassessing the cost-effectiveness of urban mitigation options by integrating a systemic approach and social costs," Energy Policy, Elsevier, vol. 92(C), pages 124-138.
    10. Bhardwaj, Chandan & Axsen, Jonn & Kern, Florian & McCollum, David, 2020. "Why have multiple climate policies for light-duty vehicles? Policy mix rationales, interactions and research gaps," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 309-326.
    11. L. Hay & A. H. B. Duffy & R. I. Whitfield, 2017. "The S‐Cycle Performance Matrix: Supporting Comprehensive Sustainability Performance Evaluation of Technical Systems," Systems Engineering, John Wiley & Sons, vol. 20(1), pages 45-70, January.
    12. Ravikumar, Dwarakanath & Malghan, Deepak, 2013. "Material constraints for indigenous production of CdTe PV: Evidence from a Monte Carlo experiment using India's National Solar Mission Benchmarks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 393-403.
    13. Haoran Zhao & Huiru Zhao & Sen Guo, 2018. "Short-Term Wind Electric Power Forecasting Using a Novel Multi-Stage Intelligent Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    14. Vimpari, Jussi & Junnila, Seppo, 2017. "Evaluating decentralized energy investments: Spatial value of on-site PV electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1217-1222.
    15. Kukkikatte Ramamurthy Rao, Harshadeep & Gemechu, Eskinder & Thakur, Ujwal & Shankar, Karthik & Kumar, Amit, 2021. "Techno-economic assessment of titanium dioxide nanorod-based perovskite solar cells: From lab-scale to large-scale manufacturing," Applied Energy, Elsevier, vol. 298(C).
    16. Yu, Shiwei & Wei, Yi-Ming & Guo, Haixiang & Ding, Liping, 2014. "Carbon emission coefficient measurement of the coal-to-power energy chain in China," Applied Energy, Elsevier, vol. 114(C), pages 290-300.
    17. Hongli Liu & Xiaoyu Yan & Jinhua Cheng & Jun Zhang & Yan Bu, 2021. "Driving Factors for the Spatiotemporal Heterogeneity in Technical Efficiency of China’s New Energy Industry," Energies, MDPI, vol. 14(14), pages 1-21, July.
    18. Beylot, Antoine & Payet, Jérôme & Puech, Clément & Adra, Nadine & Jacquin, Philippe & Blanc, Isabelle & Beloin-Saint-Pierre, Didier, 2014. "Environmental impacts of large-scale grid-connected ground-mounted PV installations," Renewable Energy, Elsevier, vol. 61(C), pages 2-6.
    19. Á. Pereira & A. Carballo-Penela & A. Guerra & X. Vence, 2018. "Designing a policy package for the promotion of servicising: A case study of vineyard crop protection in Galicia (Spain)," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 61(2), pages 348-369, January.
    20. Vogt-Schilb, Adrien & Hallegatte, Stephane & de Gouvello Christophe, 2014. "Long-term mitigation strategies and marginal abatement cost curves : a case study on Brazil," Policy Research Working Paper Series 6808, The World Bank.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:22:p:6377-:d:286489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.