IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i1p234-d194982.html
   My bibliography  Save this article

A Collaborative Stakeholder Decision-Making Approach for Sustainable Urban Logistics

Author

Listed:
  • Ivana Semanjski

    (Department of Industrial Systems Engineering and Product Design, Ghent University, Technologiepark 903, 9052 Gent-Zwijnaarde, Belgium
    Industrial Systems Engineering (ISyE), Ghent University, 9052 Gent-Zwijnaarde, Belgium)

  • Sidharta Gautama

    (Department of Industrial Systems Engineering and Product Design, Ghent University, Technologiepark 903, 9052 Gent-Zwijnaarde, Belgium
    Industrial Systems Engineering (ISyE), Ghent University, 9052 Gent-Zwijnaarde, Belgium)

Abstract

Cities strongly rely on efficient urban logistics to ensure their attractiveness, quality of life, and economic development. In the same time, they strive to ensure livable and safe environments around its road network, where the increased presence of light and heavy goods vehicles raises questions of regarding safety and environmental impacts. Recent literature has well-recognized the need to consider different stakeholders’ perspectives on these issues, in order to achieve desired outcomes. In this paper, we introduce a collaborative stakeholders’ decision-making approach for sustainable urban logistics, and demonstrate its applicability on a real-life example. The suggested approach extends existing route planning approaches by considering route sustainability as a part of an arc’s traversal cost. The integration of route sustainability is based on the adoption of a multi-criterial decision-making approach, with the possibility of including different stakeholders’ points of view, and evaluating the sustainability cost concerning the route’s spatial context. To demonstrate the applicability of the suggested approach, we extract the route sustainability cost from the traffic sign database, and implement the findings on a real-life example. Furthermore, the suggested approach exhibits a high level of transferability to various local contexts, where local stakeholders might have a different view on the route sustainability than is the case in our example.

Suggested Citation

  • Ivana Semanjski & Sidharta Gautama, 2019. "A Collaborative Stakeholder Decision-Making Approach for Sustainable Urban Logistics," Sustainability, MDPI, vol. 11(1), pages 1-11, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:234-:d:194982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/1/234/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/1/234/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Franceschetti, Anna & Honhon, Dorothée & Van Woensel, Tom & Bektaş, Tolga & Laporte, Gilbert, 2013. "The time-dependent pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 265-293.
    2. José Holguín-Veras & Michael Silas & John Polimeni & Brenda Cruz, 2008. "An Investigation on the Effectiveness of Joint Receiver–Carrier Policies to Increase Truck Traffic in the Off-peak Hours," Networks and Spatial Economics, Springer, vol. 8(4), pages 327-354, December.
    3. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    4. Castillo-Manzano, José I. & Castro-Nuño, Mercedes & Fageda, Xavier, 2016. "Exploring the relationship between truck load capacity and traffic accidents in the European Union," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 94-109.
    5. Angelelli, E. & Arsik, I. & Morandi, V. & Savelsbergh, M. & Speranza, M.G., 2016. "Proactive route guidance to avoid congestion," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 1-21.
    6. Chaudhary, Pandav & Chhetri, Sachin Kumar & Joshi, Kiran Man & Shrestha, Basanta Man & Kayastha, Prabin, 2016. "Application of an Analytic Hierarchy Process (AHP) in the GIS interface for suitable fire site selection: A case study from Kathmandu Metropolitan City, Nepal," Socio-Economic Planning Sciences, Elsevier, vol. 53(C), pages 60-71.
    7. Kinga Kijewska & Witold Torbacki & Stanisław Iwan, 2018. "Application of AHP and DEMATEL Methods in Choosing and Analysing the Measures for the Distribution of Goods in Szczecin Region," Sustainability, MDPI, vol. 10(7), pages 1-26, July.
    8. Fukasawa, Ricardo & He, Qie & Song, Yongjia, 2016. "A disjunctive convex programming approach to the pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 61-79.
    9. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    10. Valerio Gatta & Edoardo Marcucci, 2016. "Stakeholder-specific data acquisition and urban freight policy evaluation: evidence, implications and new suggestions," Transport Reviews, Taylor & Francis Journals, vol. 36(5), pages 585-609, September.
    11. Liu, Siyuan & Qu, Qiang, 2016. "Dynamic collective routing using crowdsourcing data," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 450-469.
    12. Franceschetti, Anna & Honhon, Dorothée & Laporte, Gilbert & Woensel, Tom Van & Fransoo, Jan C., 2017. "Strategic fleet planning for city logistics," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 19-40.
    13. E. Angelelli & R. Mansini & M. Vindigni, 2016. "The Stochastic and Dynamic Traveling Purchaser Problem," Transportation Science, INFORMS, vol. 50(2), pages 642-658, May.
    14. Franceschetti, Anna & Demir, Emrah & Honhon, Dorothée & Van Woensel, Tom & Laporte, Gilbert & Stobbe, Mark, 2017. "A metaheuristic for the time-dependent pollution-routing problem," European Journal of Operational Research, Elsevier, vol. 259(3), pages 972-991.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Guillermo Urzúa-Morales & Juan Pedro Sepulveda-Rojas & Miguel Alfaro & Guillermo Fuertes & Rodrigo Ternero & Manuel Vargas, 2020. "Logistic Modeling of the Last Mile: Case Study Santiago, Chile," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Filip Škultéty & Dominika Beňová & Jozef Gnap, 2021. "City Logistics as an Imperative Smart City Mechanism: Scrutiny of Clustered EU27 Capitals," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    3. Jagienka Rześny-Cieplińska & Agnieszka Szmelter-Jarosz, 2021. "Stakeholders’ Analysis of Environmental Sustainability in Urban Logistics: A Case Study of Tricity, Poland," Energies, MDPI, vol. 14(5), pages 1-24, February.
    4. Jagienka Rześny-Cieplińska & Agnieszka Szmelter-Jarosz, 2019. "Assessment of the Crowd Logistics Solutions—The Stakeholders’ Analysis Approach," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    5. Daniela Paddeu & Paulus Aditjandra, 2020. "Shaping Urban Freight Systems via a Participatory Approach to Inform Policy-Making," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    6. Frazen Tolentino-Zondervan & Enide Bogers & Luc van de Sande, 2021. "A Managerial and Behavioral Approach in Aligning Stakeholder Goals in Sustainable Last Mile Logistics: A Case Study in the Netherlands," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    7. Csilla Bartucz & László Buics & Edit Süle, 2023. "Lack of Collaboration on the CEP Market and the Underlying Reasons—A Systematic Literature Review," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    8. Asma Fahim & Qingmei Tan & Bushra Naz & Qurat ul Ain & Sibghat Ullah Bazai, 2021. "Sustainable Higher Education Reform Quality Assessment Using SWOT Analysis with Integration of AHP and Entropy Models: A Case Study of Morocco," Sustainability, MDPI, vol. 13(8), pages 1-19, April.
    9. Leise Kelli de Oliveira & Carla de Oliveira Leite Nascimento & Paulo Renato de Sousa & Paulo Tarso Vilela de Resende & Francisco Gildemir Ferreira da Silva, 2019. "Transport Service Provider Perception of Barriers and Urban Freight Policies in Brazil," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    10. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    11. Fernando Fontes & Victor Andrade, 2022. "Bicycle Logistics as a Sustainability Strategy: Lessons from Brazil and Germany," Sustainability, MDPI, vol. 14(19), pages 1-29, October.
    12. Fanny E. Berigüete & Inma Rodriguez Cantalapiedra & Mariana Palumbo & Torsten Masseck, 2023. "Collective Intelligence to Co-Create the Cities of the Future: Proposal of an Evaluation Tool for Citizen Initiatives," Sustainability, MDPI, vol. 15(10), pages 1-28, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    2. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    3. Behnke, Martin & Kirschstein, Thomas & Bierwirth, Christian, 2021. "A column generation approach for an emission-oriented vehicle routing problem on a multigraph," European Journal of Operational Research, Elsevier, vol. 288(3), pages 794-809.
    4. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    5. Xiao, Yiyong & Zuo, Xiaorong & Huang, Jiaoying & Konak, Abdullah & Xu, Yuchun, 2020. "The continuous pollution routing problem," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    6. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    7. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    8. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    9. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.
    10. Lucie Lidinska & Josef Jablonsky, 2018. "AHP model for performance evaluation of employees in a Czech management consulting company," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 239-258, March.
    11. M Tavana & M A Sodenkamp, 2010. "A fuzzy multi-criteria decision analysis model for advanced technology assessment at Kennedy Space Center," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(10), pages 1459-1470, October.
    12. Holguín-Veras, José & Amaya Leal, Johanna & Seruya, Barbara B., 2017. "Urban freight policymaking: The role of qualitative and quantitative research," Transport Policy, Elsevier, vol. 56(C), pages 75-85.
    13. Jongseok Seo & Lidziya Lysiankova & Young-Seok Ock & Dongphil Chun, 2017. "Priorities of Coworking Space Operation Based on Comparison of the Hosts and Users’ Perspectives," Sustainability, MDPI, vol. 9(8), pages 1-10, August.
    14. Yu, Yang & Wu, Yuting & Wang, Junwei, 2019. "Bi-objective green ride-sharing problem: Model and exact method," International Journal of Production Economics, Elsevier, vol. 208(C), pages 472-482.
    15. Scholz, Michael & Pfeiffer, Jella & Rothlauf, Franz, 2017. "Using PageRank for non-personalized default rankings in dynamic markets," European Journal of Operational Research, Elsevier, vol. 260(1), pages 388-401.
    16. R. Jothi Basu & Nachiappan Subramanian & Angappa Gunasekaran & P. L. K. Palaniappan, 2017. "Influence of non-price and environmental sustainability factors on truckload procurement process," Annals of Operations Research, Springer, vol. 250(2), pages 363-388, March.
    17. Behnke, Martin & Kirschstein, Thomas, 2017. "The impact of path selection on GHG emissions in city logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 320-336.
    18. Ivan Ligardo-Herrera & Tomás Gómez-Navarro & Hannia Gonzalez-Urango, 2019. "Application of the ANP to the prioritization of project stakeholders in the context of responsible research and innovation," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(3), pages 679-701, September.
    19. Tom Pape, 2020. "Prioritising data items for business analytics: Framework and application to human resources," Papers 2012.13813, arXiv.org.
    20. Jane Rose Atwongyeire & Arkom Palamanit & Adul Bennui & Mohammad Shakeri & Kuaanan Techato & Shahid Ali, 2022. "Assessment of Suitable Areas for Smart Grid of Power Generated from Renewable Energy Resources in Western Uganda," Energies, MDPI, vol. 15(4), pages 1-31, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:1:p:234-:d:194982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.