IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i16p4318-d256345.html
   My bibliography  Save this article

Investigating the Influential Factors of Shared Travel Behavior: Comparison between App-Based Third Taxi Service and Free-Floating Bike Sharing in Nanjing, China

Author

Listed:
  • Mingyang Du

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Lin Cheng

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Xuefeng Li

    (School of Transportation, Southeast University, Nanjing 211189, China)

  • Jingzong Yang

    (School of Information, Baoshan University, Baoshan 678000, China)

Abstract

In recent years, app-based third taxi service (ATTS) and free-floating bike sharing (FFBS) have become significant travel modes to satisfy travel demands of urban residents. In order to explore the mechanism of their modes selection, firstly, based on 595 valid samples, differences between ATTS and FFBS in original modes, travel distance, geographical position distribution, and travel emergency degree were compared. Then, a multinomial logistic model was established to investigate the factors influencing the choice among ATTS, FFBS, and traditional travel modes (TTM). The results show that: (1) FFBS attracts users whose original modes are walking, private bicycle and bus, while ATTS has a certain competition effect on cruising taxi and bus. (2) Residents are more likely to change from bus to FFBS on weekends, while this competitive relationship between ATTS and bus has no significant difference in different dates. (3) Compared with TTM, residents are more inclined to utilize shared modes to participate in flexible activities, especially in suburb. (4) Interestingly, ATTS is more likely to be utilized in emergency travel, and the residents without registered permanent residences tend to use FFBS and ATTS. Finally, some suggestions and policies were proposed for the government and enterprises to improve operation managements.

Suggested Citation

  • Mingyang Du & Lin Cheng & Xuefeng Li & Jingzong Yang, 2019. "Investigating the Influential Factors of Shared Travel Behavior: Comparison between App-Based Third Taxi Service and Free-Floating Bike Sharing in Nanjing, China," Sustainability, MDPI, vol. 11(16), pages 1-18, August.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4318-:d:256345
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/16/4318/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/16/4318/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Qian, Xinwu & Ukkusuri, Satish V., 2017. "Taxi market equilibrium with third-party hailing service," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 43-63.
    2. Yuan Li & Zhenjun Zhu & Xiucheng Guo, 2019. "Operating Characteristics of Dockless Bike-Sharing Systems near Metro Stations: Case Study in Nanjing City, China," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    3. Rodier, Caroline & Alemi, Farzad & Smith, Dylan, 2016. "Dynamic Ridesharing: Exploration of Potential for Reduction in Vehicle Miles Traveled," Institute of Transportation Studies, Working Paper Series qt6r6139g8, Institute of Transportation Studies, UC Davis.
    4. Prawira Belgiawan & Jan-Dirk Schmöcker & Maya Abou-Zeid & Joan Walker & Tzu-Chang Lee & Dick Ettema & Satoshi Fujii, 2014. "Car ownership motivations among undergraduate students in China, Indonesia, Japan, Lebanon, Netherlands, Taiwan, and USA," Transportation, Springer, vol. 41(6), pages 1227-1244, November.
    5. Perboli, Guido & Ferrero, Francesco & Musso, Stefano & Vesco, Andrea, 2018. "Business models and tariff simulation in car-sharing services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 32-48.
    6. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.
    7. Jia, Yingnan & Fu, Hua, 2019. "Association between innovative dockless bicycle sharing programs and adopting cycling in commuting and non-commuting trips," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 12-21.
    8. Herman Fassou Haba & Omkar Dastane, 2018. "An Empirical Investigation on Taxi Hailing Mobile App Adoption: A Structural Equation Modelling," Business Management and Strategy, Macrothink Institute, vol. 9(1), pages 48-72, December.
    9. Li, Shengxiao & Zhao, Pengjun, 2015. "The determinants of commuting mode choice among school children in Beijing," Journal of Transport Geography, Elsevier, vol. 46(C), pages 112-121.
    10. Mingyang Du & Lin Cheng, 2018. "Better Understanding the Characteristics and Influential Factors of Different Travel Patterns in Free-Floating Bike Sharing: Evidence from Nanjing, China," Sustainability, MDPI, vol. 10(4), pages 1-14, April.
    11. Nielsen, Jesper Riber & Hovmøller, Harald & Blyth, Pascale-L. & Sovacool, Benjamin K., 2015. "Of “white crows” and “cash savers:” A qualitative study of travel behavior and perceptions of ridesharing in Denmark," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 113-123.
    12. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinyi Xie & Mingyang Du & Xuefeng Li & Yunjian Jiang, 2023. "Exploring Influential Factors of Free-Floating Bike-Sharing Usage Frequency before and after COVID-19," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
    2. Zhao, Zhiyuan & Yao, Wei & Wu, Sheng & Yang, Xiping & Wu, Qunyong & Fang, Zhixiang, 2023. "Identifying the collaborative scheduling areas between ride-hailing and traditional taxi services based on vehicle trajectory data," Journal of Transport Geography, Elsevier, vol. 107(C).
    3. Dongdong Feng & Lin Cheng & Mingyang Du, 2020. "Exploring the Impact of Dockless Bikeshare on Docked Bikeshare—A Case Study in London," Sustainability, MDPI, vol. 12(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Ni & Jiaqi Chen, 2020. "Exploring the Effects of the Built Environment on Two Transfer Modes for Metros: Dockless Bike Sharing and Taxis," Sustainability, MDPI, vol. 12(5), pages 1-20, March.
    2. Yiling Deng & Pengjun Zhao, 2023. "The determinants of shared bike use in China," Transportation, Springer, vol. 50(1), pages 1-23, February.
    3. Li, Chunzhi & Xiao, Wei & Zhang, Dayong & Ji, Qiang, 2021. "Low-carbon transformation of cities: Understanding the demand for dockless bike sharing in China," Energy Policy, Elsevier, vol. 159(C).
    4. Alexandros Nikitas, 2019. "How to Save Bike-Sharing: An Evidence-Based Survival Toolkit for Policy-Makers and Mobility Providers," Sustainability, MDPI, vol. 11(11), pages 1-17, June.
    5. Zijia Wang & Lei Cheng & Yongxing Li & Zhiqiang Li, 2020. "Spatiotemporal Characteristics of Bike-Sharing Usage around Rail Transit Stations: Evidence from Beijing, China," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    6. Qiang Yan & Kun Gao & Lijun Sun & Minhua Shao, 2020. "Spatio-Temporal Usage Patterns of Dockless Bike-Sharing Service Linking to a Metro Station: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 12(3), pages 1-14, January.
    7. Ma, Xinwei & Ji, Yanjie & Yuan, Yufei & Van Oort, Niels & Jin, Yuchuan & Hoogendoorn, Serge, 2020. "A comparison in travel patterns and determinants of user demand between docked and dockless bike-sharing systems using multi-sourced data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 139(C), pages 148-173.
    8. Cheng, Long & Huang, Jie & Jin, Tanhua & Chen, Wendong & Li, Aoyong & Witlox, Frank, 2023. "Comparison of station-based and free-floating bikeshare systems as feeder modes to the metro," Journal of Transport Geography, Elsevier, vol. 107(C).
    9. Zhao, De & Ong, Ghim Ping, 2021. "Geo-fenced parking spaces identification for free-floating bicycle sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 49-63.
    10. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Zheng, Zhiguo & Chen, Yunfeng & Zhu, Debao & Sun, Huijun & Wu, Jianjun & Pan, Xing & Li, Daqing, 2021. "Extreme unbalanced mobility network in bike sharing system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    12. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    13. Cheng, Long & Wang, Kailai & De Vos, Jonas & Huang, Jie & Witlox, Frank, 2022. "Exploring non-linear built environment effects on the integration of free-floating bike-share and urban rail transport: A quantile regression approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 175-187.
    14. Li, Haojie & Zhang, Yingheng & Ding, Hongliang & Ren, Gang, 2019. "Effects of dockless bike-sharing systems on the usage of the London Cycle Hire," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 398-411.
    15. Yixiao Li & Zhaoxin Dai & Lining Zhu & Xiaoli Liu, 2019. "Analysis of Spatial and Temporal Characteristics of Citizens’ Mobility Based on E-Bike GPS Trajectory Data in Tengzhou City, China," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    16. Wang, Yacan & Douglas, Matthew & Hazen, Benjamin, 2021. "Diffusion of public bicycle systems: Investigating influences of users’ perceived risk and switching intention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 143(C), pages 1-13.
    17. Haotian Ma & Xinlu Chen & Zhilei Zhen & Qian Wang, 2023. "Bicycle-sharing in Beijing: An Assessment of Economic, Environmental, and Health Effects, and Identification of Key Drivers of Environmental Performance," Networks and Spatial Economics, Springer, vol. 23(1), pages 285-316, March.
    18. Guangnian Xiao & Zihao Wang, 2020. "Empirical Study on Bikesharing Brand Selection in China in the Post-Sharing Era," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
    19. Ross-Perez, Antonio & Walton, Neil & Pinto, Nuno, 2022. "Identifying trip purpose from a dockless bike-sharing system in Manchester," Journal of Transport Geography, Elsevier, vol. 99(C).
    20. Cheng, Long & Yang, Junjian & Chen, Xuewu & Cao, Mengqiu & Zhou, Hang & Sun, Yu, 2020. "How could the station-based bike sharing system and the free-floating bike sharing system be coordinated?," Journal of Transport Geography, Elsevier, vol. 89(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:16:p:4318-:d:256345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.