IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i13p3679-d245671.html
   My bibliography  Save this article

Effects of Indoor Plants on the Physical Environment with Respect to Distance and Green Coverage Ratio

Author

Listed:
  • Ke-Tsung Han

    (Department of Landscape Architecture, National Chin-Yi University of Technology, No.57, Sec. 2, Zhongshan Rd., Taiping Dist., Taichung 41170, Taiwan)

Abstract

Few studies have conducted experiments in daily living environments to examine the effects of indoor plants on objective aspects of the physical environment. This study examined the effects of plant distance and green coverage ratio on the objective physical environment and subjective psychological perceptions, along with the correlation between the objective physical environment and subjective psychological perceptions regarding indoor plants. A randomized control trial of plant distance and green coverage ratio was conducted in a room located in the basement of a university building in Taiwan. Aspects of the objective physical environment were measured using air quality detectors. Subjective psychological perceptions were evaluated based on the questionnaire responses of 60 undergraduates. The results revealed that (1) regardless of number of plants, the closer the plant, the higher the CO 2 level; (2) more indoor plants resulted in higher CO 2 and humidity and lower PM 2.5 , PM 10 , and temperature; and (3) the lower the levels of fine and suspended particles in the air were, the stronger were the feelings of preference, naturalness of the environment, and pleasure in participants. Indoor plants that can regulate indoor air quality and microclimates without consuming energy warrant greater attention and wider application.

Suggested Citation

  • Ke-Tsung Han, 2019. "Effects of Indoor Plants on the Physical Environment with Respect to Distance and Green Coverage Ratio," Sustainability, MDPI, vol. 11(13), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3679-:d:245671
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/13/3679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/13/3679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kirk R. Smith, 2003. "Indoor Air Pollution," World Bank Publications - Reports 9723, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke-Tsung Han & Li-Wen Ruan & Li-Shih Liao, 2022. "Effects of Indoor Plants on Human Functions: A Systematic Review with Meta-Analyses," IJERPH, MDPI, vol. 19(12), pages 1-41, June.
    2. Ke-Tsung Han & Li-Wen Ruan, 2019. "Effects of Indoor Plants on Self-Reported Perceptions: A Systemic Review," Sustainability, MDPI, vol. 11(16), pages 1-26, August.
    3. Won-Ji Kim & Tae-Kyung Lee, 2022. "Greenness Index and Preferences for Interior Landscapes in Residential Spaces," Sustainability, MDPI, vol. 14(9), pages 1-14, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluigi De Gennaro & Paolo Rosario Dambruoso & Alessia Di Gilio & Valerio Di Palma & Annalisa Marzocca & Maria Tutino, 2015. "Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System," IJERPH, MDPI, vol. 13(1), pages 1-9, December.
    2. Stephanie L. Martin & Jennifer K. Arney & Lisa M. Mueller & Edward Kumakech & Fiona Walugembe & Emmanuel Mugisha, 2013. "Using Formative Research to Design a Behavior Change Strategy to Increase the Use of Improved Cookstoves in Peri-Urban Kampala, Uganda," IJERPH, MDPI, vol. 10(12), pages 1-19, December.
    3. James D. Johnston & Megan E. Hawks & Haley B. Johnston & Laurel A. Johnson & John D. Beard, 2020. "Comparison of Liquefied Petroleum Gas Cookstoves and Wood Cooking Fires on PM 2.5 Trends in Brick Workers’ Homes in Nepal," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    4. Chia-Ching Lin & Chien-Chih Chiu & Po-Yen Lee & Kuo-Jen Chen & Chen-Xi He & Sheng-Kai Hsu & Kai-Chun Cheng, 2022. "The Adverse Effects of Air Pollution on the Eye: A Review," IJERPH, MDPI, vol. 19(3), pages 1-14, January.
    5. Samar Khairy Ghanem, 2018. "The relationship between population and the environment and its impact on sustainable development in Egypt using a multi-equation model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 305-342, February.
    6. Kyran O'Sullivan & Douglas F. Barnes, 2007. "Energy Policies and Multitopic Household Surveys : Guidelines for Questionnaire Design in Living Standards Measurement Studies," World Bank Publications - Books, The World Bank Group, number 6615, December.
    7. Takama, Takeshi & Tsephel, Stanzin & Johnson, Francis X., 2012. "Evaluating the relative strength of product-specific factors in fuel switching and stove choice decisions in Ethiopia. A discrete choice model of household preferences for clean cooking alternatives," Energy Economics, Elsevier, vol. 34(6), pages 1763-1773.
    8. Victor M. Berrueta & Montserrat Serrano-Medrano & Carlos García-Bustamante & Marta Astier & Omar R. Masera, 2017. "Promoting sustainable local development of rural communities and mitigating climate change: the case of Mexico’s Patsari improved cookstove project," Climatic Change, Springer, vol. 140(1), pages 63-77, January.
    9. Anna Ruth Pickett & Michelle L. Bell, 2011. "Assessment of Indoor Air Pollution in Homes with Infants," IJERPH, MDPI, vol. 8(12), pages 1-19, December.
    10. Sikhumbuzo Archibald Buthelezi & Thandi Kapwata & Bianca Wernecke & Candice Webster & Angela Mathee & Caradee Yael Wright, 2019. "Household Fuel Use for Heating and Cooking and Respiratory Health in a Low-Income, South African Coastal Community," IJERPH, MDPI, vol. 16(4), pages 1-12, February.
    11. Pier Mannuccio Mannucci & Massimo Franchini, 2017. "Health Effects of Ambient Air Pollution in Developing Countries," IJERPH, MDPI, vol. 14(9), pages 1-8, September.
    12. Beyene, Abebe D. & Koch, Steven F., 2013. "Clean fuel-saving technology adoption in urban Ethiopia," Energy Economics, Elsevier, vol. 36(C), pages 605-613.
    13. Vijay S. Limaye & Wolfgang Schöpp & Markus Amann, 2018. "Applying Integrated Exposure-Response Functions to PM 2.5 Pollution in India," IJERPH, MDPI, vol. 16(1), pages 1-20, December.
    14. García-Frapolli, Eduardo & Schilmann, Astrid & Berrueta, Victor M. & Riojas-Rodríguez, Horacio & Edwards, Rufus D. & Johnson, Michael & Guevara-Sanginés, Alejandro & Armendariz, Cynthia & Masera, Omar, 2010. "Beyond fuelwood savings: Valuing the economic benefits of introducing improved biomass cookstoves in the Purépecha region of Mexico," Ecological Economics, Elsevier, vol. 69(12), pages 2598-2605, October.
    15. Sabrina Naz & Andrew Page & Kingsley Emwinyore Agho, 2015. "Household Air Pollution and Under-Five Mortality in Bangladesh (2004–2011)," IJERPH, MDPI, vol. 12(10), pages 1-16, October.
    16. World Health Organization Regional Office for South-East Asia, 2017. "Tobacco control for sustainable development," University of California at San Francisco, Center for Tobacco Control Research and Education qt4nn7k3jr, Center for Tobacco Control Research and Education, UC San Francisco.
    17. Barnes, Douglas F. & Khandker, Shahidur R. & Samad, Hussain A., 2010. "Energy access, efficiency, and poverty : how many households are energy poor in Bangladesh ?," Policy Research Working Paper Series 5332, The World Bank.
    18. Deng, Lei & Torres-Rojas, Dorisel & Burford, Michael & Whitlow, Thomas H. & Lehmann, Johannes & Fisher, Elizabeth M., 2018. "Fuel sensitivity of biomass cookstove performance," Applied Energy, Elsevier, vol. 215(C), pages 13-20.
    19. Mestl, Heidi Elizabeth Staff & Eskeland, Gunnar S., 2009. "Richer and healthier, but not Greener? Choices concerning household energy use in India," Energy Policy, Elsevier, vol. 37(8), pages 3009-3019, August.
    20. Patel, Sameer & Biswas, Pratim, 2018. "A simplified combustion model integrated with a particle growth dynamic model for top-lit updraft cookstoves," Energy, Elsevier, vol. 157(C), pages 658-668.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:13:p:3679-:d:245671. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.