IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i11p3176-d237667.html
   My bibliography  Save this article

Urban Road Crashes and Weather Conditions: Untangling the Effects

Author

Listed:
  • António Lobo

    (Faculty of Engineering of the University of Porto, Research Centre for Territory, Transports and Environment, 4200-465 Porto, Portugal)

  • Sara Ferreira

    (Faculty of Engineering of the University of Porto, Research Centre for Territory, Transports and Environment, 4200-465 Porto, Portugal)

  • Isabel Iglesias

    (Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208 Matosinhos, Portugal)

  • António Couto

    (Faculty of Engineering of the University of Porto, Research Centre for Territory, Transports and Environment, 4200-465 Porto, Portugal)

Abstract

Most previous studies show that inclement weather increases the risk of road users being involved in a traffic crash. However, some authors have demonstrated a little or even an opposite effect, observed both on crash frequency and severity. In urban roads, where a greater number of conflict points and heavier traffic represent a higher exposure to risk, the potential increase of crash risk caused by adverse weather deserves a special attention. This study investigates the impact of meteorological conditions on the frequency of road crashes in urban environment, using the city of Porto, Portugal as a case study. The weather effects were analyzed for different types of crashes: single-vehicle, multi-vehicle, property-damage-only, and injury crashes. The methodology is based on negative binomial and Poisson models with random parameters, considering the influence of daily precipitation and mean temperature, as well as the lagged effects of the precipitation accumulated during the previous month. The results show that rainy days are more prone to the occurrence of road crashes, although the past precipitation may attenuate such effect. Temperatures below 10 °C are associated with higher crash frequencies, complying with the impacts of precipitation in the context of the Portuguese climate characteristics.

Suggested Citation

  • António Lobo & Sara Ferreira & Isabel Iglesias & António Couto, 2019. "Urban Road Crashes and Weather Conditions: Untangling the Effects," Sustainability, MDPI, vol. 11(11), pages 1-13, June.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3176-:d:237667
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/11/3176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/11/3176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    2. Cameron, A. Colin & Trivedi, Pravin K., 1990. "Regression-based tests for overdispersion in the Poisson model," Journal of Econometrics, Elsevier, vol. 46(3), pages 347-364, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    4. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    5. Agostino Capponi & Zhaonan Qu, 2025. "Handling Sparse Non-negative Data in Finance," Papers 2509.01478, arXiv.org.
    6. Greene, William, 2007. "Functional Form and Heterogeneity in Models for Count Data," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(2), pages 113-218, August.
    7. Christopher J. W. Zorn, 1998. "An Analytic and Empirical Examination of Zero-Inflated and Hurdle Poisson Specifications," Sociological Methods & Research, , vol. 26(3), pages 368-400, February.
    8. Jim Millington, 2000. "Migration and Age: The Effect of Age on Sensitivity to Migration Stimuli," Regional Studies, Taylor & Francis Journals, vol. 34(6), pages 521-533.
    9. Christian Kleiber & Achim Zeileis, 2016. "Visualizing Count Data Regressions Using Rootograms," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
    10. Bertoli, Simone & Marchetta, Francesca, 2015. "Bringing It All Back Home – Return Migration and Fertility Choices," World Development, Elsevier, vol. 65(C), pages 27-40.
    11. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    12. Paul Kwame Nkegbe & Naasegnibe Kuunibe & Samuel Sekyi, 2017. "Poverty and malaria morbidity in the Jirapa District of Ghana: A count regression approach," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1293472-129, January.
    13. Ulf‐ G. Gerdtham, 1997. "Equity in Health Care Utilization: Further Tests Based on Hurdle Models and Swedish Micro Data," Health Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 303-319, May.
    14. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    15. Dong, Chunjiao & Shao, Chunfu & Clarke, David B. & Nambisan, Shashi S., 2018. "An innovative approach for traffic crash estimation and prediction on accommodating unobserved heterogeneities," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 407-428.
    16. Mario Jovanovic, 2011. "Financial Uncertainty in Germany and its Impact on Western European Terrorism," Ruhr Economic Papers 0296, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    17. Boubaker, Sabri & Labégorre, Florence, 2008. "Ownership structure, corporate governance and analyst following: A study of French listed firms," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 961-976, June.
    18. Lv, Jinpeng & Lord, Dominique & Zhang, Yunlong & Chen, Zhi, 2015. "Investigating Peltzman effects in adopting mandatory seat belt laws in the US: Evidence from non-occupant fatalities," Transport Policy, Elsevier, vol. 44(C), pages 58-64.
    19. Arnousse Beaulière, 2004. "Pauvreté et fécondité en Haïti," Documents de travail 97, Groupe d'Economie du Développement de l'Université Montesquieu Bordeaux IV.
    20. Ye, Wei & Xu, Yueru & Shi, Xiaomeng & Shiwakoti, Nirajan & Ye, Zhirui & Zheng, Yuan, 2024. "A macroscopic safety indicator for road segment: application of entropy theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:11:p:3176-:d:237667. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.