IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i5p1322-d143051.html
   My bibliography  Save this article

Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites

Author

Listed:
  • Shazim Ali Memon

    (Department of Civil Engineering, School of Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan)

  • Israr Wahid

    (Department of Civil Engineering, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan)

  • Muhammad Khizar Khan

    (Department of Civil Engineering, COMSATS Institute of Information Technology, Abbottabad 22060, Pakistan)

  • Muhammad Ashraf Tanoli

    (Department of Civil Engineering, GIK Institute of Engineering Sciences and Technology, Topi 23640, Pakistan)

  • Madina Bimaganbetova

    (Department of Civil Engineering, School of Engineering, Nazarbayev University, Astana 010000, Republic of Kazakhstan)

Abstract

The open burning of biomass residue constitutes a major portion of biomass burning and leads to air pollution, smog, and health hazards. Various alternatives have been suggested for open burning of crop residue; however, each of them has few inherent drawbacks. This research suggests an alternative method to dispose wheat straw, i.e., to calcine it in a controlled environment and use the resulting ash as a replacement of cement by some percentage in cement-based composites. When wheat straw, an agricultural product, is burned, it is very rich in SiO 2 , which has a pozzolanic character. However, the pozzolanic character is sensitive to calcination temperature and grinding conditions. According to the authors’ best knowledge, until now, no systematic study has been devised to assess the most favorable conditions of burning and grinding for pozzolanic activity of wheat straw ash (WSA). Hence, a systematic experimental program was designed. In Phase I, calcination of WS was carried out at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h. The resulting ashes were tested for color change, weight loss, XRD, XRF, Chapelle activity, Fratini, and pozzolanic activity index (PAI) tests. From test results, it was found that beyond 600 °C, the amorphous silica transformed into crystalline silica. The WSA calcined at 600 °C was found to satisfy Chapelle and Fratini tests requirements, as well as the PAI requirement of ASTM at 28 days. Therefore, WSA produced at 600 °C (WSA600) showed the best pozzolanic performance. In Phase II, WSA600 was ground for various intervals (15–240 min). These ground ashes were tested for SEM, Blaine fineness, Chapelle activity, Fratini, and PAI tests. From test results, it was observed that after 120 min of grinding, there was an increase of 48% in Blaine surface area, with a consequence that WSA-replaced cement cubes achieved a compressive strength almost similar to that of the control mix. Conclusively, wheat straw calcined at 600 °C and ground for 120 min was found to be the most effective way to use pozzolanic material in cement-based composites. The addition of WSA in cement-based composites would achieve manifold objectives, i.e., aiding in the production of environmentally friendly concrete, the use of wheat straw as fuel for electricity production, and adding economic value to wheat straw.

Suggested Citation

  • Shazim Ali Memon & Israr Wahid & Muhammad Khizar Khan & Muhammad Ashraf Tanoli & Madina Bimaganbetova, 2018. "Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites," Sustainability, MDPI, vol. 10(5), pages 1-21, April.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1322-:d:143051
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/5/1322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/5/1322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohammed Fouad Alnahhal & Ubagaram Johnson Alengaram & Mohd Zamin Jumaat & Mamoun A. Alqedra & Kim Hung Mo & Mathialagan Sumesh, 2017. "Evaluation of Industrial By-Products as Sustainable Pozzolanic Materials in Recycled Aggregate Concrete," Sustainability, MDPI, vol. 9(5), pages 1-23, May.
    2. Xiaoxian Zhang & Fang Ma, 2015. "Emergy Evaluation of Different Straw Reuse Technologies in Northeast China," Sustainability, MDPI, vol. 7(9), pages 1-18, August.
    3. Taehyoung Kim & Sungho Tae & Chang U. Chae & Kanghee Lee, 2016. "Proposal for the Evaluation of Eco-Efficient Concrete," Sustainability, MDPI, vol. 8(8), pages 1-19, July.
    4. Duku, Moses Hensley & Gu, Sai & Hagan, Essel Ben, 2011. "A comprehensive review of biomass resources and biofuels potential in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 404-415, January.
    5. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    6. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    7. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    8. Tae Hyoung Kim, 2016. "Assessment of Construction Cost Saving by Concrete Mixing the Activator Material," Sustainability, MDPI, vol. 8(4), pages 1-20, April.
    9. Anselm Eisentraut, 2010. "Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries," IEA Energy Papers 2010/1, OECD Publishing.
    10. José Marcos Ortega & Rosa María Tremiño & Isidro Sánchez & Miguel Ángel Climent, 2018. "Effects of Environment in the Microstructure and Properties of Sustainable Mortars with Fly Ash and Slag after a 5-Year Exposure Period," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    11. Hendrik G. van Oss & Amy C. Padovani, 2003. "Cement Manufacture and the Environment Part II: Environmental Challenges and Opportunities," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 93-126, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arlen Zúniga & Rute Eires & Raphaele Malheiro, 2023. "New Lime-Based Hybrid Composite of Sugarcane Bagasse and Hemp as Aggregates," Resources, MDPI, vol. 12(5), pages 1-20, April.
    2. Yi Zhang & Guanmin Zhang & Min Wei & Zhenqiang Gao & Maocheng Tian & Fang He, 2019. "Comparisons of Acid and Water Solubilities of Rice Straw Ash Together with Its Major Ash-Forming Elements at Different Ashing Temperatures: An Experimental Study," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    3. Jordi Payá & Josefa Roselló & José María Monzó & Alejandro Escalera & María Pilar Santamarina & María Victoria Borrachero & Lourdes Soriano, 2018. "An Approach to a New Supplementary Cementing Material: Arundo donax Straw Ash," Sustainability, MDPI, vol. 10(11), pages 1-16, November.
    4. Akter, Mst. Mahmoda & Surovy, Israt Zahan & Sultana, Nazmin & Faruk, Md. Omar & Gilroyed, Brandon H. & Tijing, Leonard & Arman, & Didar-ul-Alam, Md. & Shon, Ho Kyong & Nam, Sang Yong & Kabir, Mohammad, 2024. "Techno-economics and environmental sustainability of agricultural biomass-based energy potential," Applied Energy, Elsevier, vol. 359(C).
    5. Jan Fořt & Jiří Šál & Jaroslav Žák & Robert Černý, 2020. "Assessment of Wood-Based Fly Ash as Alternative Cement Replacement," Sustainability, MDPI, vol. 12(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nygaard, Ivan & Dembelé, Filifing & Daou, Ibrahima & Mariko, Adama & Kamissoko, Famakan & Coulibaly, Nanourou & Borgstrøm, Rasmus L. & Bruun, Thilde Beck, 2016. "Lignocellulosic residues for production of electricity, biogas or second generation biofuel: A case study of technical and sustainable potential of rice straw in Mali," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 202-212.
    2. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2013. "Status of renewable energy consumption and developmental challenges in Sub-Sahara Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 453-463.
    3. Nii Nelson & Jo Darkwa & John Calautit & Mark Worall & Robert Mokaya & Eunice Adjei & Francis Kemausuor & Julius Ahiekpor, 2021. "Potential of Bioenergy in Rural Ghana," Sustainability, MDPI, vol. 13(1), pages 1-16, January.
    4. Präger, Fabian & Paczkowski, Sebastian & Sailer, Gregor & Derkyi, Nana Sarfo Agyemang & Pelz, Stefan, 2019. "Biomass sources for a sustainable energy supply in Ghana – A case study for Sunyani," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 413-424.
    5. Kemausuor, Francis & Kamp, Andreas & Thomsen, Sune Tjalfe & Bensah, Edem Cudjoe & Østergård, Hanne, 2014. "Assessment of biomass residue availability and bioenergy yields in Ghana," Resources, Conservation & Recycling, Elsevier, vol. 86(C), pages 28-37.
    6. Ramamurthi, Pooja Vijay & Fernandes, Maria Cristina & Nielsen, Per Sieverts & Nunes, Clemente Pedro, 2016. "Utilisation of rice residues for decentralised electricity generation in Ghana: An economic analysis," Energy, Elsevier, vol. 111(C), pages 620-629.
    7. Kemausuor, Francis & Nygaard, Ivan & Mackenzie, Gordon, 2015. "Prospects for bioenergy use in Ghana using Long-range Energy Alternatives Planning model," Energy, Elsevier, vol. 93(P1), pages 672-682.
    8. Arranz-Piera, Pol & Kemausuor, Francis & Addo, Ahmad & Velo, Enrique, 2017. "Electricity generation prospects from clustered smallholder and irrigated rice farms in Ghana," Energy, Elsevier, vol. 121(C), pages 246-255.
    9. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    10. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Mokhtar, A.S., 2013. "Renewable energy resources for distributed power generation in Nigeria: A review of the potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 257-268.
    11. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ogundola, M.A. & Umar, U., 2014. "Sustainable potential of bioenergy resources for distributed power generation development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 361-370.
    12. Mairi J. Black & Amitava Roy & Edson Twinomunuji & Francis Kemausuor & Richard Oduro & Matthew Leach & Jhuma Sadhukhan & Richard Murphy, 2021. "Bottled Biogas—An Opportunity for Clean Cooking in Ghana and Uganda," Energies, MDPI, vol. 14(13), pages 1-14, June.
    13. R. N. Ossei-Bremang & F. Kemausuor, 2021. "A decision support system for the selection of sustainable biomass resources for bioenergy production," Environment Systems and Decisions, Springer, vol. 41(3), pages 437-454, September.
    14. Bukari, Dramani & Kemausuor, Francis & Quansah, David A. & Adaramola, Muyiwa S., 2021. "Towards accelerating the deployment of decentralised renewable energy mini-grids in Ghana: Review and analysis of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Ayamga, Ezekiel Anabire & Kemausuor, Francis & Addo, Ahmad, 2015. "Technical analysis of crop residue biomass energy in an agricultural region of Ghana," Resources, Conservation & Recycling, Elsevier, vol. 96(C), pages 51-60.
    16. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    17. Sanna, Aimaro & Dri, Marco & Hall, Matthew R. & Maroto-Valer, Mercedes, 2012. "Waste materials for carbon capture and storage by mineralisation (CCSM) – A UK perspective," Applied Energy, Elsevier, vol. 99(C), pages 545-554.
    18. Monika Czop & Beata Łaźniewska-Piekarczyk, 2019. "Evaluation of the Leachability of Contaminations of Fly Ash and Bottom Ash from the Combustion of Solid Municipal Waste before and after Stabilization Process," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    19. Meng, Xiangmei & de Jong, Wiebren & Kudra, Tadeusz, 2016. "A state-of-the-art review of pulse combustion: Principles, modeling, applications and R&D issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 73-114.
    20. Ackom, Emmanuel K. & Alemagi, Dieudonne & Ackom, Nana B. & Minang, Peter A. & Tchoundjeu, Zac, 2013. "Modern bioenergy from agricultural and forestry residues in Cameroon: Potential, challenges and the way forward," Energy Policy, Elsevier, vol. 63(C), pages 101-113.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:5:p:1322-:d:143051. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.