IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i12p4843-d191556.html
   My bibliography  Save this article

Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain

Author

Listed:
  • Ramin Rayee

    (Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan)

  • Hoang-Dung Tran

    (Nguyen Tat Thanh University, Ho Chi Minh City 702000, Vietnam)

  • Tran Dang Xuan

    (Graduate School for International Development and Cooperation (IDEC), Hiroshima University, Higashi-Hiroshima 739-8529, Japan)

  • Tran Dang Khanh

    (Agricultural Genetics Institute, Hanoi City 123000, Vietnam
    Vietnam National University of Agriculture, Hanoi City 131000, Vietnam)

Abstract

The control of protein and amylose content is the principal challenge in rice nutrient and quality improvement. In this study, water deficits in 2- and 3-day intervals were imposed on two Japonica cultivars K1 and K3, and an Indica K4 subtype after anthesis to harvest. It was observed that although rice yield was affected, the protein content was increased 6.53–6.63% to 9.93–10.16%. The amylose quantity was reduced significantly from 22.00–22.43% to 16.33–17.56%, while fatty acids in rice grain were not influenced. Total anthocyanins were greatly promoted by 53.1% as compared to the non-treated trials. The antioxidant capacity in rice grain increased up to 59.1% in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and 41.6% in reducing power assays. Findings of this research revealed that the 3-day interval of water deficit imposition was the most effective to improve rice macronutrients and quality, as well as beneficial phytochemicals and antioxidants in rice grain. The water control after anthesis to harvest in rice cultivation is beneficial and economical for farmers to improve rice nutrients and quality, thus contributes to the sustainable rice production in many developing countries.

Suggested Citation

  • Ramin Rayee & Hoang-Dung Tran & Tran Dang Xuan & Tran Dang Khanh, 2018. "Imposed Water Deficit after Anthesis for the Improvement of Macronutrients, Quality, Phytochemicals, and Antioxidants in Rice Grain," Sustainability, MDPI, vol. 10(12), pages 1-12, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4843-:d:191556
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/12/4843/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/12/4843/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bouman, B. A.M., 2007. "A conceptual framework for the improvement of crop water productivity at different spatial scales," Agricultural Systems, Elsevier, vol. 93(1-3), pages 43-60, March.
    2. Bouman, B. A. M. & Tuong, T. P., 2001. "Field water management to save water and increase its productivity in irrigated lowland rice," Agricultural Water Management, Elsevier, vol. 49(1), pages 11-30, July.
    3. Yunlong Pang & Jauhar Ali & Xiaoqian Wang & Neil Johann Franje & Jastin Edrian Revilleza & Jianlong Xu & Zhikang Li, 2016. "Relationship of Rice Grain Amylose, Gelatinization Temperature and Pasting Properties for Breeding Better Eating and Cooking Quality of Rice Varieties," PLOS ONE, Public Library of Science, vol. 11(12), pages 1-14, December.
    4. Jennifer Spindel & Hasina Begum & Deniz Akdemir & Parminder Virk & Bertrand Collard & Edilberto Redoña & Gary Atlin & Jean-Luc Jannink & Susan R McCouch, 2015. "Genomic Selection and Association Mapping in Rice (Oryza sativa): Effect of Trait Genetic Architecture, Training Population Composition, Marker Number and Statistical Model on Accuracy of Rice Genomic," PLOS Genetics, Public Library of Science, vol. 11(2), pages 1-25, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramin Rayee & Tran Dang Xuan & Tran Dang Khanh & Hoang-Dung Tran & Kakar Kifayatullah, 2021. "Efficacy of Irrigation Interval after Anthesis on Grain Quality, Alkali Digestion, and Gel Consistency of Rice," Agriculture, MDPI, vol. 11(4), pages 1-9, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krauß, Michael & Kraatz, Simone & Drastig, Katrin & Prochnow, Annette, 2015. "The influence of dairy management strategies on water productivity of milk production," Agricultural Water Management, Elsevier, vol. 147(C), pages 175-186.
    2. Hafeez, Mohsin & Bundschuh, Jochen & Mushtaq, Shahbaz, 2014. "Exploring synergies and tradeoffs: Energy, water, and economic implications of water reuse in rice-based irrigation systems," Applied Energy, Elsevier, vol. 114(C), pages 889-900.
    3. Hafeez, M.M. & Bouman, B.A.M. & Van de Giesen, N. & Vlek, P., 2007. "Scale effects on water use and water productivity in a rice-based irrigation system (UPRIIS) in the Philippines," Agricultural Water Management, Elsevier, vol. 92(1-2), pages 81-89, August.
    4. Thakur, Amod K. & Mohanty, Rajeeb K. & Singh, Rajbir & Patil, Dhiraj U., 2015. "Enhancing water and cropping productivity through Integrated System of Rice Intensification (ISRI) with aquaculture and horticulture under rainfed conditions," Agricultural Water Management, Elsevier, vol. 161(C), pages 65-76.
    5. Bueno, C.S. & Bucourt, M. & Kobayashi, N. & Inubushi, K. & Lafarge, T., 2010. "Water productivity of contrasting rice genotypes grown under water-saving conditions in the tropics and investigation of morphological traits for adaptation," Agricultural Water Management, Elsevier, vol. 98(2), pages 241-250, December.
    6. Haorui Chen & Zhanyi Gao & Wenzhi Zeng & Jing Liu & Xiao Tan & Songjun Han & Shaoli Wang & Yongqing Zhao & Chengkun Yu, 2017. "Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    7. Maraseni, Tek Narayan & Mushtaq, Shahbaz & Hafeez, Mohsin & Maroulis, Jerry, 2010. "Greenhouse gas implications of water reuse in the Upper Pumpanga River Integrated Irrigation System, Philippines," Agricultural Water Management, Elsevier, vol. 97(3), pages 382-388, March.
    8. Guo, Erjing & Yang, Xiaoguang & Li, Tao & Zhang, Tianyi & Wilson, Lloyed Ted & Wang, Xiaoyu & Zheng, Dongxiao & Yang, Yubin, 2021. "Does ENSO strongly affect rice yield and water application in Northeast China?," Agricultural Water Management, Elsevier, vol. 245(C).
    9. Xu, Guo-wei & Lu, Da-Ke & Wang, He-Zheng & Li, Youjun, 2018. "Morphological and physiological traits of rice roots and their relationships to yield and nitrogen utilization as influenced by irrigation regime and nitrogen rate," Agricultural Water Management, Elsevier, vol. 203(C), pages 385-394.
    10. Ren, Dongyang & Xu, Xu & Engel, Bernard & Huang, Quanzhong & Xiong, Yunwu & Huo, Zailin & Huang, Guanhua, 2021. "A comprehensive analysis of water productivity in natural vegetation and various crops coexistent agro-ecosystems," Agricultural Water Management, Elsevier, vol. 243(C).
    11. Brinkhoff, James & Houborg, Rasmus & Dunn, Brian W., 2022. "Rice ponding date detection in Australia using Sentinel-2 and Planet Fusion imagery," Agricultural Water Management, Elsevier, vol. 273(C).
    12. Kriti Poudel & Ram Hari Timilsina & Anish Bhattarai, 2020. "Effect Of Crop Establishment Methods On Yield Of Spring Rice At Khairahani, Chitwan, Nepal," Big Data In Agriculture (BDA), Zibeline International Publishing, vol. 3(1), pages 6-11, November.
    13. Manel Ben Hassen & Federica Monaco & Arianna Facchi & Marco Romani & Giampiero Valè & Guido Sali, 2017. "Economic Performance of Traditional and Modern Rice Varieties under Different Water Management Systems," Sustainability, MDPI, vol. 9(3), pages 1-10, February.
    14. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo & Nyagumbo, Isaiah, 2014. "Infiltration and planting pits for improved water management and maize yield in semi-arid Zimbabwe," Agricultural Water Management, Elsevier, vol. 141(C), pages 30-46.
    15. Ehsan Moradi & Jesús Rodrigo-Comino & Enric Terol & Gaspar Mora-Navarro & Alexandre Marco da Silva & Ioannis N. Daliakopoulos & Hassan Khosravi & Manuel Pulido Fernández & Artemi Cerdà, 2020. "Quantifying Soil Compaction in Persimmon Orchards Using ISUM (Improved Stock Unearthing Method) and Core Sampling Methods," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    16. Yufeng Luo & Haolong Fu & Seydou Traore, 2014. "Biodiversity Conservation in Rice Paddies in China: Toward Ecological Sustainability," Sustainability, MDPI, vol. 6(9), pages 1-18, September.
    17. Senthilkumar, K. & Bindraban, P.S. & Thiyagarajan, T.M. & de Ridder, N. & Giller, K.E., 2008. "Modified rice cultivation in Tamil Nadu, India: Yield gains and farmers' (lack of) acceptance," Agricultural Systems, Elsevier, vol. 98(2), pages 82-94, September.
    18. Cao, Jingjing & Tan, Junwei & Cui, Yuanlai & Luo, Yufeng, 2019. "Irrigation scheduling of paddy rice using short-term weather forecast data," Agricultural Water Management, Elsevier, vol. 213(C), pages 714-723.
    19. Ponsioen, Thomas C. & Hengsdijk, Huib & Wolf, Joost & van Ittersum, Martin K. & Rotter, Reimund P. & Son, Tran Thuc & Laborte, Alice G., 2006. "TechnoGIN, a tool for exploring and evaluating resource use efficiency of cropping systems in East and Southeast Asia," Agricultural Systems, Elsevier, vol. 87(1), pages 80-100, January.
    20. Amarasingha, R.P.R.K. & Suriyagoda, L.D.B. & Marambe, B. & Gaydon, D.S. & Galagedara, L.W. & Punyawardena, R. & Silva, G.L.L.P. & Nidumolu, U. & Howden, M., 2015. "Simulation of crop and water productivity for rice (Oryza sativa L.) using APSIM under diverse agro-climatic conditions and water management techniques in Sri Lanka," Agricultural Water Management, Elsevier, vol. 160(C), pages 132-143.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:12:p:4843-:d:191556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.