IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2017i1p3-d123757.html
   My bibliography  Save this article

Effluents from Fish Farming Ponds: A View from the Perspective of Its Main Components

Author

Listed:
  • Anderson Coldebella

    (Fisheries Engineering Department, State University of West Paraná, 85903-000 Toledo, Paraná, Brazil
    Aquaculture Engineering Department, Federal Institute of Paraná, 85860-000 Foz do Iguaçu, Paraná, Brazil)

  • André Luis Gentelini

    (Fisheries Engineering Department, State University of West Paraná, 85903-000 Toledo, Paraná, Brazil
    Aquaculture Engineering Department, Federal Institute of Paraná, 85860-000 Foz do Iguaçu, Paraná, Brazil)

  • Pitágoras Augusto Piana

    (Fisheries Engineering Department, State University of West Paraná, 85903-000 Toledo, Paraná, Brazil)

  • Priscila Ferri Coldebella

    (Environment Integrated Laboratories, Dinâmica das Cataratas University Center, 85868-030 Foz do Iguaçu, Paraná, Brazil)

  • Wilson Rogério Boscolo

    (Fisheries Engineering Department, State University of West Paraná, 85903-000 Toledo, Paraná, Brazil)

  • Aldi Feiden

    (Fisheries Engineering Department, State University of West Paraná, 85903-000 Toledo, Paraná, Brazil)

Abstract

Among the animal protein production activities, world aquaculture has the highest growth rate, and is mainly practiced in ground-excavated ponds. However, with great productivity comes the concern about the increasing generation of effluents, mainly at the moment of fish removal, when high loads of organic matter and nutrients are released into the environment. Thus, this study evaluated the quality of effluents through the principal component analysis (PCA) in samples from nurseries of different sizes in four sampling scenarios. Analysis was performed during the process of fish removal in Nile Tilapia intensive fish farming sites at various properties in the Western region of Paraná State in Brazil. Twenty physical and chemical parameters were analyzed in each effluent sample using standard methods of effluent analysis. The results indicated that the concentrations of Suspended Solids (SS), Total Solids (TS), Chemical Oxygen Demand (COD), and Total Phosphorus (TP) increased significantly at the end of the fish removal process, which caused a progressive deterioration in the effluent released into the environment. Hence, regulating water management during cultivation, as well as mitigating the effects of effluent generated in fish removal, is indispensable to maintain the legality, profitability, and sustainability of this sector.

Suggested Citation

  • Anderson Coldebella & André Luis Gentelini & Pitágoras Augusto Piana & Priscila Ferri Coldebella & Wilson Rogério Boscolo & Aldi Feiden, 2017. "Effluents from Fish Farming Ponds: A View from the Perspective of Its Main Components," Sustainability, MDPI, vol. 10(1), pages 1-16, December.
  • Handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:3-:d:123757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emmanuel A. Frimpong & Yaw B. Ansah & Stephen Amisah & Daniel Adjei-Boateng & Nelson W. Agbo & Hillary Egna, 2014. "Effects of Two Environmental Best Management Practices on Pond Water and Effluent Quality and Growth of Nile Tilapia, Oreochromis niloticus," Sustainability, MDPI, vol. 6(2), pages 1-24, February.
    2. Ariel E. Turcios & Jutta Papenbrock, 2014. "Sustainable Treatment of Aquaculture Effluents—What Can We Learn from the Past for the Future?," Sustainability, MDPI, vol. 6(2), pages 1-21, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima Yahya & Antoine El Samrani & Mohamad Khalil & Alaa El-Din Abdin & Rasha El-Kholy & Mohamed Embaby & Mohab Negm & Dirk De Ketelaere & Anna Spiteri & Eleanna Pana & Vasileios Takavakoglou, 2023. "Decentralized Wetland-Aquaponics Addressing Environmental Degradation and Food Security Challenges in Disadvantaged Rural Areas: A Nature-Based Solution Driven by Mediterranean Living Labs," Sustainability, MDPI, vol. 15(20), pages 1-16, October.
    2. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Toward Feeds for Circular Multitrophic Food Production Systems: Holistically Evaluating Growth Performance and Nutrient Excretion of African Catfish Fed Fish Meal-Free Diets in Comparison to Nile Tila," Sustainability, MDPI, vol. 14(21), pages 1-31, November.
    3. József Popp & László Váradi & Emese Békefi & András Péteri & Gergő Gyalog & Zoltán Lakner & Judit Oláh, 2018. "Evolution of Integrated Open Aquaculture Systems in Hungary: Results from a Case Study," Sustainability, MDPI, vol. 10(1), pages 1-19, January.
    4. Simon Goddek & Boris Delaide & Utra Mankasingh & Kristin Vala Ragnarsdottir & Haissam Jijakli & Ragnheidur Thorarinsdottir, 2015. "Challenges of Sustainable and Commercial Aquaponics," Sustainability, MDPI, vol. 7(4), pages 1-26, April.
    5. Christopher Shaw & Klaus Knopf & Werner Kloas, 2022. "Fish Feeds in Aquaponics and Beyond: A Novel Concept to Evaluate Protein Sources in Diets for Circular Multitrophic Food Production Systems," Sustainability, MDPI, vol. 14(7), pages 1-30, March.
    6. Crentsil, Christian & Gschwandtner, Adelina & Wahhaj, Zaki, 2020. "The effects of risk and ambiguity aversion on technology adoption: Evidence from aquaculture in Ghana," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 46-68.
    7. Ariel E. Turcios & Marie Hielscher & Bernardo Duarte & Vanessa F. Fonseca & Isabel Caçador & Jutta Papenbrock, 2021. "Screening of Emerging Pollutants (EPs) in Estuarine Water and Phytoremediation Capacity of Tripolium pannonicum under Controlled Conditions," IJERPH, MDPI, vol. 18(3), pages 1-17, January.
    8. Laura Silva & Eucario Gasca-Leyva & Edgardo Escalante & Kevin M. Fitzsimmons & David Valdés Lozano, 2015. "Evaluation of Biomass Yield and Water Treatment in Two Aquaponic Systems Using the Dynamic Root Floating Technique (DRF)," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    9. Christopher Shaw & Klaus Knopf & Laura Klatt & Gabina Marin Arellano & Werner Kloas, 2023. "Closing Nutrient Cycles through the Use of System-Internal Resource Streams: Implications for Circular Multitrophic Food Production Systems and Aquaponic Feed Development," Sustainability, MDPI, vol. 15(9), pages 1-30, April.
    10. Khiari, Zied & Alka, Kumari & Kelloway, Stephen & Mason, Beth & Savidov, Nick, 2020. "Integration of Biochar Filtration into Aquaponics: Effects on Particle Size Distribution and Turbidity Removal," Agricultural Water Management, Elsevier, vol. 229(C).
    11. Thomas, Ritty Maria & Verma, Ajit Kumar & Prakash, Chandra & Krishna, Hari & Prakash, Satya & Kumar, Ashok, 2019. "Utilization of Inland saline underground water for bio-integration of Nile tilapia (Oreochromis niloticus) and spinach (Spinacia oleracea)," Agricultural Water Management, Elsevier, vol. 222(C), pages 154-160.
    12. Mónica R. Diaz & Javier Araneda & Andrea Osses & Jaime Orellana & José A. Gallardo, 2020. "Efficiency of Salicornia neei to Treat Aquaculture Effluent from a Hypersaline and Artificial Wetland," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
    13. Jan Klein & Andrea Schüch & Phillip Sandmann & Michael Nelles & Harry Wilhelm Palm & Adrian Bischoff, 2023. "Utilization of Sludge from African Catfish ( Clarias gariepinus ) Recirculating Aquaculture Systems for Vermifiltration," Sustainability, MDPI, vol. 15(9), pages 1-16, April.
    14. Delaide, Boris & Teerlinck, Stefan & Decombel, An & Bleyaert, Peter, 2019. "Effect of wastewater from a pikeperch (Sander lucioperca L.) recirculated aquaculture system on hydroponic tomato production and quality," Agricultural Water Management, Elsevier, vol. 226(C).
    15. Aamir Mehmood Shah & Gengyuan Liu & Fanxin Meng & Qing Yang & Jingyan Xue & Stefano Dumontet & Renato Passaro & Marco Casazza, 2021. "A Review of Urban Green and Blue Infrastructure from the Perspective of Food-Energy-Water Nexus," Energies, MDPI, vol. 14(15), pages 1-24, July.
    16. Yilong Hao & Kai Ding & Yaoyang Xu & Yuting Tang & Dong Liu & Gang Li, 2020. "States, Trends, and Future of Aquaponics Research," Sustainability, MDPI, vol. 12(18), pages 1-14, September.
    17. Ana Paula Monschau Funck & José Antônio Beirão Simões & Edenilce de Fátima & Luciano dos, Santos Rodrigues & Marilia Martins Melo & Kleber Campos Miranda Filho & Marina Guimarães Ferreira & Fabi, 2019. "Water Quality and Effluents Generated during Rainbow Trout Culture in a Raceway System," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(5), pages 1-12, April.
    18. T. Olivier Amoussou & Aboubacar Toguyeni & Ibrahim Imorou Toko & Antoine Chikou & Mivice Bravo & Issaka Youssao Abdou Karim, 2017. "Effects of Hydrogeographical Origin on Zootechnical Parameters of Wild Populations of Oreochromis niloticus (Linnaeus, 1758)," International Journal of Sciences, Office ijSciences, vol. 6(05), pages 30-42, May.
    19. Magwaza, Shirly Tentile & Magwaza, Lembe Samukelo & Odindo, Alfred Oduor & Mashilo, Jacob & Mditshwa, Asanda & Buckley, Chris, 2020. "Evaluating the feasibility of human excreta-derived material for the production of hydroponically grown tomato plants - Part I: Photosynthetic efficiency, leaf gas exchange and tissue mineral content," Agricultural Water Management, Elsevier, vol. 234(C).
    20. Bea-Ven Chang & Chien-Sen Liao & Yi-Tang Chang & Wei-Liang Chao & Shinn-Lih Yeh & Dong-Lin Kuo & Chu-Wen Yang, 2019. "Investigation of a Farm-scale Multitrophic Recirculating Aquaculture System with the Addition of Rhodovulum sulfidophilum for Milkfish ( Chanos chanos ) Coastal Aquaculture," Sustainability, MDPI, vol. 11(7), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2017:i:1:p:3-:d:123757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.