IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v8y2025i3p69-d1715481.html
   My bibliography  Save this article

Archimedean Copulas: A Useful Approach in Biomedical Data—A Review with an Application in Pediatrics

Author

Listed:
  • Giulia Risca

    (Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy)

  • Stefania Galimberti

    (Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
    Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy)

  • Paola Rebora

    (Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
    Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy)

  • Alessandro Cattoni

    (Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy)

  • Maria Grazia Valsecchi

    (Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
    Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy)

  • Giulia Capitoli

    (Bicocca Bioinformatics Biostatistics and Bioimaging Centre-B4, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
    Biostatistics and Clinical Epidemiology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy)

Abstract

Many applications in health research involve the analysis of multivariate distributions of random variables. In this paper, we review the basic theory of copulas to illustrate their advantages in deriving a joint distribution from given marginal distributions, with a specific focus on bivariate cases. Particular attention is given to the Archimedean family of copulas, which includes widely used functions such as Clayton and Gumbel–Hougaard, characterized by a single association parameter and a relatively simple structure. This work differs from previous reviews by providing a focused overview of applied studies in biomedical research that have employed Archimedean copulas, due to their flexibility in modeling a wide range of dependence structures. Their ease of use and ability to accommodate rotated forms make them suitable for various biomedical applications, including those involving survival data. We briefly present the most commonly used methods for estimation and model selection of copula’s functions, with the purpose of introducing these tools within the broader framework. Several recent examples in the health literature, and an original example of a pediatric study, demonstrate the applicability of Archimedean copulas and suggest that this approach, although still not widely adopted, can be useful in many biomedical research settings.

Suggested Citation

  • Giulia Risca & Stefania Galimberti & Paola Rebora & Alessandro Cattoni & Maria Grazia Valsecchi & Giulia Capitoli, 2025. "Archimedean Copulas: A Useful Approach in Biomedical Data—A Review with an Application in Pediatrics," Stats, MDPI, vol. 8(3), pages 1-19, August.
  • Handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:69-:d:1715481
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/8/3/69/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/8/3/69/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernandez, Viviana, 2008. "Copula-based measures of dependence structure in assets returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3615-3628.
    2. Akaike, Hirotugu, 1981. "Likelihood of a model and information criteria," Journal of Econometrics, Elsevier, vol. 16(1), pages 3-14, May.
    3. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.
    4. Guosheng Yin & Ying Yuan, 2009. "Bayesian dose finding in oncology for drug combinations by copula regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 211-224, May.
    5. Tomasz Burzykowski & Geert Molenberghs & Marc Buyse & Helena Geys & Didier Renard, 2001. "Validation of surrogate end points in multiple randomized clinical trials with failure time end points," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(4), pages 405-422.
    6. Yan, Jun, 2007. "Enjoy the Joy of Copulas: With a Package copula," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i04).
    7. Rainer Winkelmann, 2012. "Copula Bivariate Probit Models: With An Application To Medical Expenditures," Health Economics, John Wiley & Sons, Ltd., vol. 21(12), pages 1444-1455, December.
    8. Christian Genest & Jean‐François Quessy & Bruno Rémillard, 2006. "Goodness‐of‐fit Procedures for Copula Models Based on the Probability Integral Transformation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(2), pages 337-366, June.
    9. Yun-Hee Choi & Laurent Briollais & Aung K. Win & John Hopper & Dan Buchanan & Mark Jenkins & Lajmi Lakhal-Chaieb, 2017. "Modeling of successive cancer risks in Lynch syndrome families in the presence of competing risks using copulas," Biometrics, The International Biometric Society, vol. 73(1), pages 271-282, March.
    10. Maha E Qura & Aisha Fayomi & Mutua Kilai & Ehab M Almetwally, 2023. "Bivariate power Lomax distribution with medical applications," PLOS ONE, Public Library of Science, vol. 18(3), pages 1-32, March.
    11. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Rejoinder on: Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 290-292, August.
    12. Joe, Harry, 2005. "Asymptotic efficiency of the two-stage estimation method for copula-based models," Journal of Multivariate Analysis, Elsevier, vol. 94(2), pages 401-419, June.
    13. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    14. Kouros Owzar & Pranab Kumar Sen, 2003. "Copulas: concepts and novel applications," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 323-353.
    15. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quessy, Jean-François & Bahraoui, Tarik, 2014. "Weak convergence of empirical and bootstrapped C-power processes and application to copula goodness-of-fit," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 16-36.
    2. Di Bernardino Elena & Rullière Didier, 2013. "On certain transformations of Archimedean copulas: Application to the non-parametric estimation of their generators," Dependence Modeling, De Gruyter, vol. 1(2013), pages 1-36, October.
    3. Elisa Perrone & Andreas Rappold & Werner G. Müller, 2017. "$$D_s$$ D s -optimality in copula models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 403-418, August.
    4. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    5. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    6. Lu, Xiaohui & Zheng, Xu, 2020. "A goodness-of-fit test for copulas based on martingale transformation," Journal of Econometrics, Elsevier, vol. 215(1), pages 84-117.
    7. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    8. Boris Brodsky & Henry Penikas & Irina Safaryan, 2009. "Detection of Structural Breaks in Copula Models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 16(4), pages 3-15.
    9. Zhao, Xiaobing & Zhou, Xian, 2012. "Estimation of medical costs by copula models with dynamic change of health status," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 480-491.
    10. Amjad, Muhammad & Akbar, Muhammad & Ullah, Hamd, 2022. "A copula-based approach for creating an index of micronutrient intakes at household level in Pakistan," Economics & Human Biology, Elsevier, vol. 46(C).
    11. Elena Di Bernardino & Didier Rullière, 2016. "On tail dependence coefficients of transformed multivariate Archimedean copulas," Post-Print hal-00992707, HAL.
    12. Durante Fabrizio & Puccetti Giovanni & Scherer Matthias & Vanduffel Steven, 2016. "Stat Trek. An interview with Christian Genest," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-14, May.
    13. Bücher, Axel & Dette, Holger & Volgushev, Stanislav, 2012. "A test for Archimedeanity in bivariate copula models," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 121-132.
    14. Nikoloulopoulos, Aristidis K. & Joe, Harry & Li, Haijun, 2012. "Vine copulas with asymmetric tail dependence and applications to financial return data," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3659-3673.
    15. Patton, Andrew, 2013. "Copula Methods for Forecasting Multivariate Time Series," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 899-960, Elsevier.
    16. Genest, Christian & Masiello, Esterina & Tribouley, Karine, 2009. "Estimating copula densities through wavelets," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 170-181, April.
    17. Härdle, Wolfgang Karl & Okhrin, Ostap & Okhrin, Yarema, 2008. "Modeling dependencies in finance using copulae," SFB 649 Discussion Papers 2008-043, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Boris Brodsky & Henry Penikas & Irina Safaryan, 2012. "Copula structural shift identification," HSE Working papers WP BRP 05/FE/2012, National Research University Higher School of Economics.
    19. Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
    20. Juan Lin & Ximing Wu, 2015. "Smooth Tests of Copula Specifications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 128-143, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:8:y:2025:i:3:p:69-:d:1715481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.