IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Goodness-of-fit Procedures for Copula Models Based on the Probability Integral Transformation

Listed author(s):

Wang & Wells ["J. Amer. Statist. Assoc." 95 (2000) 62] describe a non-parametric approach for checking whether the dependence structure of a random sample of censored bivariate data is appropriately modelled by a given family of Archimedean copulas. Their procedure is based on a truncated version of the Kendall process introduced by Genest & Rivest ["J. Amer. Statist. Assoc." 88 (1993) 1034] and later studied by Barbe "et al". ["J. Multivariate Anal." 58 (1996) 197]. Although Wang & Wells (2000) determine the asymptotic behaviour of their truncated process, their model selection method is based exclusively on the observed value of its "L"-super-2-norm. This paper shows how to compute asymptotic "p"-values for various goodness-of-fit test statistics based on a non-truncated version of Kendall's process. Conditions for weak convergence are met in the most common copula models, whether Archimedean or not. The empirical behaviour of the proposed goodness-of-fit tests is studied by simulation, and power comparisons are made with a test proposed by Shih ["Biometrika" 85 (1998) 189] for the gamma frailty family. Copyright 2006 Board of the Foundation of the Scandinavian Journal of Statistics..

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association in its journal Scandinavian Journal of Statistics.

Volume (Year): 33 (2006)
Issue (Month): 2 ()
Pages: 337-366

in new window

Handle: RePEc:bla:scjsta:v:33:y:2006:i:2:p:337-366
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:33:y:2006:i:2:p:337-366. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.