IDEAS home Printed from https://ideas.repec.org/a/gam/jstats/v7y2024i4p80-1391d1524231.html
   My bibliography  Save this article

A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data

Author

Listed:
  • Menglu Liang

    (Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD 20742, USA
    Current address: Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, Baltimore Ave, College Park, MD 20740, USA.
    These authors contributed equally to this work.)

  • Zheng Li

    (Novartis Pharmaceuticals, New Jersey, NJ 07936, USA
    These authors contributed equally to this work.)

  • Lijun Zhang

    (Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
    These authors contributed equally to this work.)

  • Ming Wang

    (Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
    These authors contributed equally to this work.)

Abstract

Epidemiological approaches for examining human health responses to environmental exposures in observational studies frequently address confounding by employing advanced matching techniques and statistical methods grounded in conditional likelihood. This study incorporates a recently developed Bayesian hierarchical spatiotemporal model within a conditional logistic regression framework to capture the heterogeneous effects of environmental exposures in a case-crossover (CCO) design. Spatial and temporal dependencies are modeled through random effects incorporating multivariate conditional autoregressive priors. Flexible frailty structures are introduced to explore strategies for managing temporal variables. Parameter estimation and inference are conducted using a Monte Carlo Markov chain method within a Bayesian framework. Model fit and optimal model selection are evaluated using the deviance information criterion. Simulations assess and compare model performance across various scenarios. Finally, the approach is illustrated with workers’ compensation claims data from New York and Florida to examine spatiotemporal heterogeneity in hospitalization rates related to heat prostration.

Suggested Citation

  • Menglu Liang & Zheng Li & Lijun Zhang & Ming Wang, 2024. "A Spatial–Temporal Bayesian Model for a Case-Crossover Design with Application to Extreme Heat and Claims Data," Stats, MDPI, vol. 7(4), pages 1-13, November.
  • Handle: RePEc:gam:jstats:v:7:y:2024:i:4:p:80-1391:d:1524231
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-905X/7/4/80/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-905X/7/4/80/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Jerrett & Richard T Burnett & Pavlos Kanaroglou & John Eyles & Norm Finkelstein & Chris Giovis & Jeffrey R Brook, 2001. "A GIS–Environmental Justice Analysis of Particulate Air Pollution in Hamilton, Canada," Environment and Planning A, , vol. 33(6), pages 955-973, June.
    2. Joshua Warren & Montserrat Fuentes & Amy Herring & Peter Langlois, 2012. "Spatial-Temporal Modeling of the Association between Air Pollution Exposure and Preterm Birth: Identifying Critical Windows of Exposure," Biometrics, The International Biometric Society, vol. 68(4), pages 1157-1167, December.
    3. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kimberly A. Kaufeld & Montse Fuentes & Brian J. Reich & Amy H. Herring & Gary M. Shaw & Maria A. Terres, 2017. "A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes," IJERPH, MDPI, vol. 14(9), pages 1-16, September.
    2. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    3. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    4. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    5. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    6. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    7. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    8. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    9. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    10. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    11. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    12. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).
    13. repec:jss:jstsof:21:i08 is not listed on IDEAS
    14. Deng, Yaguo & Lopes Moreira da Veiga, María Helena & Wiper, Michael Peter, 2016. "Efficiency evaluation of Spanish hotel chains," DES - Working Papers. Statistics and Econometrics. WS 23897, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. Cathy W. S. Chen & Sangyeol Lee, 2017. "Bayesian causality test for integer-valued time series models with applications to climate and crime data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(4), pages 797-814, August.
    16. Makoto Chikaraishi & Akimasa Fujiwara & Junyi Zhang & Kay Axhausen, 2011. "Identifying variations and co-variations in discrete choice models," Transportation, Springer, vol. 38(6), pages 993-1016, November.
    17. Galatia Cleanthous & Emilio Porcu & Philip White, 2021. "Regularity and approximation of Gaussian random fields evolving temporally over compact two-point homogeneous spaces," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(4), pages 836-860, December.
    18. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    19. Xing Ju Lee & Christopher C. Drovandi & Anthony N. Pettitt, 2015. "Model choice problems using approximate Bayesian computation with applications to pathogen transmission data sets," Biometrics, The International Biometric Society, vol. 71(1), pages 198-207, March.
    20. Chaix, Basile & Jouven, Xavier & Thomas, Frédérique & Leal, Cinira & Billaudeau, Nathalie & Bean, Kathy & Kestens, Yan & Jëgo, Bertrand & Pannier, Bruno & Danchin, Nicolas, 2011. "Why socially deprived populations have a faster resting heart rate: Impact of behaviour, life course anthropometry, and biology – the RECORD Cohort Study," Social Science & Medicine, Elsevier, vol. 73(10), pages 1543-1550.
    21. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jstats:v:7:y:2024:i:4:p:80-1391:d:1524231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.