IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v4y2016i3p30-d76031.html
   My bibliography  Save this article

On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory

Author

Listed:
  • Hirbod Assa

    (Institute for Financial and Actuarial Mathematics, University of Liverpool, Liverpool L69 7ZX, UK)

  • Manuel Morales

    (Department of Mathematics and Statistics, University of Montreal, CP. 6128 Succ. Centre-Ville, Montreal, QC H3C 3J7, Canada)

  • Hassan Omidi Firouzi

    (Senior Enterprise Model Risk Analyst, Royal Bank of Canada, 200 Bay St, Toronto, ON M5J 2J1, Canada)

Abstract

In this paper we introduce a new coherent cumulative risk measure on a subclass in the space of càdlàg processes. This new coherent risk measure turns out to be tractable enough within a class of models where the aggregate claims is driven by a spectrally positive Lévy process. We focus our motivation and discussion on the problem of capital allocation. Indeed, this risk measure is well-suited to address the problem of capital allocation in an insurance context. We show that the capital allocation problem for this risk measure has a unique solution determined by the Euler allocation method. Some examples and connections with existing results as well as practical implications are also discussed.

Suggested Citation

  • Hirbod Assa & Manuel Morales & Hassan Omidi Firouzi, 2016. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Risks, MDPI, vol. 4(3), pages 1-20, August.
  • Handle: RePEc:gam:jrisks:v:4:y:2016:i:3:p:30-:d:76031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/4/3/30/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/4/3/30/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Joseph H.T. & Hardy, Mary R., 2009. "A capital allocation based on a solvency exchange option," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 357-366, June.
    2. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    3. Julien Trufin & Hansjoerg Albrecher & Michel M Denuit, 2011. "Properties of a Risk Measure Derived from Ruin Theory," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 36(2), pages 174-188, December.
    4. Jan Dhaene & Andreas Tsanakas & Emiliano A. Valdez & Steven Vanduffel, 2012. "Optimal Capital Allocation Principles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 79(1), pages 1-28, March.
    5. Michael Kalkbrener, 2009. "An axiomatic characterization of capital allocations of coherent risk measures," Quantitative Finance, Taylor & Francis Journals, vol. 9(8), pages 961-965.
    6. Patrick Cheridito & Freddy Delbaen & Michael Kupper, 2005. "Coherent and convex monetary risk measures for unbounded càdlàg processes," Finance and Stochastics, Springer, vol. 9(3), pages 369-387, July.
    7. Gary Venter, 2004. "Capital Allocation Survey with Commentary," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(2), pages 96-107.
    8. Dhaene, J. & Henrard, L. & Landsman, Z. & Vandendorpe, A. & Vanduffel, S., 2008. "Some results on the CTE-based capital allocation rule," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 855-863, April.
    9. Lemaire, Jean, 1984. "An Application of Game Theory: Cost Allocation," ASTIN Bulletin, Cambridge University Press, vol. 14(1), pages 61-81, April.
    10. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    11. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    12. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    13. Louis J. Billera & David C. Heath, 1982. "Allocation of Shared Costs: A Set of Axioms Yielding A Unique Procedure," Mathematics of Operations Research, INFORMS, vol. 7(1), pages 32-39, February.
    14. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    15. Erel, Isil & Myers, Stewart C. & Read, James A., 2015. "A theory of risk capital," Journal of Financial Economics, Elsevier, vol. 118(3), pages 620-635.
    16. Dickson,David C. M., 2010. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521176750.
    17. J. David Cummins, 2000. "Allocation of Capital in the Insurance Industry," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 3(1), pages 7-27, March.
    18. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted risk capital allocations," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 263-269, October.
    19. Romain Biard, 2013. "Asymptotic multivariate finite-time ruin probabilities with heavy-tailed claim amounts: Impact of dependence and optimal reserve allocation," Post-Print hal-00538571, HAL.
    20. Tsanakas, Andreas, 2004. "Dynamic capital allocation with distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 223-243, October.
    21. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    2. Dóra Balog, 2017. "Capital Allocation in the Insurance Sector," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(3), pages 74-97.
    3. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    4. Guusje Delsing & Michel Mandjes & Peter Spreij & Erik Winands, 2021. "On Capital Allocation for a Risk Measure Derived from Ruin Theory," Papers 2103.16264, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. van Gulick, Gerwald & De Waegenaere, Anja & Norde, Henk, 2012. "Excess based allocation of risk capital," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 26-42.
    2. van Gulick, G. & De Waegenaere, A.M.B. & Norde, H.W., 2010. "Excess Based Allocation of Risk Capital," Other publications TiSEM f9231521-fea7-4524-8fea-8, Tilburg University, School of Economics and Management.
    3. Stephen J. Mildenhall, 2017. "Actuarial Geometry," Risks, MDPI, vol. 5(2), pages 1-44, June.
    4. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    5. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    6. Jaume Belles-Sampera & Montserrat Guillen & Miguel Santolino, 2023. "Haircut Capital Allocation as the Solution of a Quadratic Optimisation Problem," Mathematics, MDPI, vol. 11(18), pages 1-17, September.
    7. Furman, Edward & Hackmann, Daniel & Kuznetsov, Alexey, 2020. "On log-normal convolutions: An analytical–numerical method with applications to economic capital determination," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 120-134.
    8. Assa Hirbod & Morales Manuel & Omidi Firouzi Hassan, 2013. "On the Capital Allocation Problem for a New Coherent Risk Measure in Collective Risk Theory," Papers 1311.0354, arXiv.org.
    9. Kang, Woo-Young & Poshakwale, Sunil, 2019. "A new approach to optimal capital allocation for RORAC maximization in banks," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 153-165.
    10. Boonen, Tim J. & Guillen, Montserrat & Santolino, Miguel, 2019. "Forecasting compositional risk allocations," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 79-86.
    11. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    12. Gómez, Fabio & Tang, Qihe & Tong, Zhiwei, 2022. "The gradient allocation principle based on the higher moment risk measure," Journal of Banking & Finance, Elsevier, vol. 143(C).
    13. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2014. "On capital allocation by minimizing multivariate risk indicators," Working Papers hal-01082559, HAL.
    14. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    15. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    16. Grechuk, Bogdan, 2023. "Extended gradient of convex function and capital allocation," European Journal of Operational Research, Elsevier, vol. 305(1), pages 429-437.
    17. Takaaki Koike & Marius Hofert, 2020. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Risks, MDPI, vol. 8(1), pages 1-33, January.
    18. Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
    19. Chen Chen & Garud Iyengar & Ciamac C. Moallemi, 2013. "An Axiomatic Approach to Systemic Risk," Management Science, INFORMS, vol. 59(6), pages 1373-1388, June.
    20. Takaaki Koike & Marius Hofert, 2019. "Markov Chain Monte Carlo Methods for Estimating Systemic Risk Allocations," Papers 1909.11794, arXiv.org, revised May 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:4:y:2016:i:3:p:30-:d:76031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.