IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i6p124-d837184.html
   My bibliography  Save this article

Meta-Learning Approaches for Recovery Rate Prediction

Author

Listed:
  • Paolo Gambetti

    (CRIF S.p.A., via M. Fantin, 1-3, 40131 Bologna, Italy)

  • Francesco Roccazzella

    (LFIN/LIDAM, UCLouvain, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium)

  • Frédéric Vrins

    (LFIN/LIDAM, UCLouvain, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve, Belgium
    Department of Decision Science, HEC Montréal, Montréal, QC H3T 2A7, Canada)

Abstract

While previous academic research highlights the potential of machine learning and big data for predicting corporate bond recovery rates, the operations management challenge is to identify the relevant predictive variables and the appropriate model. In this paper, we use meta-learning to combine the predictions from 20 candidates of linear, nonlinear and rule-based algorithms, and we exploit a data set of predictors including security-specific factors, macro-financial indicators and measures of economic uncertainty. We find that the most promising approach consists of model combinations trained on security-specific characteristics and a limited number of well-identified, theoretically sound recovery rate determinants, including uncertainty measures. Our research provides useful indications for practitioners and regulators targeting more reliable risk measures in designing micro- and macro-prudential policies.

Suggested Citation

  • Paolo Gambetti & Francesco Roccazzella & Frédéric Vrins, 2022. "Meta-Learning Approaches for Recovery Rate Prediction," Risks, MDPI, vol. 10(6), pages 1-29, June.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:124-:d:837184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/6/124/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/6/124/
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
    2. Bekaert, Geert & Hoerova, Marie & Lo Duca, Marco, 2013. "Risk, uncertainty and monetary policy," Journal of Monetary Economics, Elsevier, vol. 60(7), pages 771-788.
    3. Paolo Gambetti & Genevière Gauthier & Frédéric Vrins, 2018. "Stochastic recovery rate: Impact of pricing measure's choice and financial consequences on single-name products," LIDAM Reprints CORE 3060, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Arturo Bris & Ivo Welch & Ning Zhu, 2006. "The Costs of Bankruptcy: Chapter 7 Liquidation versus Chapter 11 Reorganization," Journal of Finance, American Finance Association, vol. 61(3), pages 1253-1303, June.
    5. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    6. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    7. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    8. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    9. Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
    10. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    11. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
    12. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    13. Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
    14. Yao, Xiao & Crook, Jonathan & Andreeva, Galina, 2015. "Support vector regression for loss given default modelling," European Journal of Operational Research, Elsevier, vol. 240(2), pages 528-538.
    15. Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016. "The forecast combination puzzle: A simple theoretical explanation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
    16. Acharya, Viral V. & Bharath, Sreedhar T. & Srinivasan, Anand, 2007. "Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries," Journal of Financial Economics, Elsevier, vol. 85(3), pages 787-821, September.
    17. Mora, Nada, 2015. "Creditor recovery: The macroeconomic dependence of industry equilibrium," Journal of Financial Stability, Elsevier, vol. 18(C), pages 172-186.
    18. João Bastos, 2014. "Ensemble Predictions of Recovery Rates," Journal of Financial Services Research, Springer;Western Finance Association, vol. 46(2), pages 177-193, October.
    19. Loterman, Gert & Brown, Iain & Martens, David & Mues, Christophe & Baesens, Bart, 2012. "Benchmarking regression algorithms for loss given default modeling," International Journal of Forecasting, Elsevier, vol. 28(1), pages 161-170.
    20. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    21. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    22. Alexopoulos, Michelle & Cohen, Jon, 2015. "The power of print: Uncertainty shocks, markets, and the economy," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 8-28.
    23. Hartmann-Wendels, Thomas & Miller, Patrick & Töws, Eugen, 2014. "Loss given default for leasing: Parametric and nonparametric estimations," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 364-375.
    24. Jankowitsch, Rainer & Nagler, Florian & Subrahmanyam, Marti G., 2014. "The determinants of recovery rates in the US corporate bond market," Journal of Financial Economics, Elsevier, vol. 114(1), pages 155-177.
    25. Ellen Tobback & David Martens & Tony Van Gestel & Bart Baesens, 2014. "Forecasting Loss Given Default models: impact of account characteristics and the macroeconomic state," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 376-392, March.
    26. R?diger Bachmann & Steffen Elstner & Eric R. Sims, 2013. "Uncertainty and Economic Activity: Evidence from Business Survey Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(2), pages 217-249, April.
    27. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    28. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    29. Franks, Julian R. & Torous, Walter N., 1994. "A comparison of financial recontracting in distressed exchanges and chapter 11 reorganizations," Journal of Financial Economics, Elsevier, vol. 35(3), pages 349-370, June.
    30. Altman, Edward I. & Kalotay, Egon A., 2014. "Ultimate recovery mixtures," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 116-129.
    31. Gieseck Arne & Largent Yannis, 2016. "The Impact of Macroeconomic Uncertainty on Activity in the Euro Area," Review of Economics, De Gruyter, vol. 67(1), pages 25-52, May.
    32. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    33. Karatzoglou, Alexandros & Smola, Alexandros & Hornik, Kurt & Zeileis, Achim, 2004. "kernlab - An S4 Package for Kernel Methods in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 11(i09).
    34. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    35. Sergei A. Davydenko & Julian R. Franks, 2008. "Do Bankruptcy Codes Matter? A Study of Defaults in France, Germany, and the U.K," Journal of Finance, American Finance Association, vol. 63(2), pages 565-608, April.
    36. Zhang, Jie & Thomas, Lyn C., 2012. "Comparisons of linear regression and survival analysis using single and mixture distributions approaches in modelling LGD," International Journal of Forecasting, Elsevier, vol. 28(1), pages 204-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    2. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gambetti, Paolo & Gauthier, Geneviève & Vrins, Frédéric, 2019. "Recovery rates: Uncertainty certainly matters," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 371-383.
    2. Nazemi, Abdolreza & Baumann, Friedrich & Fabozzi, Frank J., 2022. "Intertemporal defaulted bond recoveries prediction via machine learning," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1162-1177.
    3. Nazemi, Abdolreza & Fatemi Pour, Farnoosh & Heidenreich, Konstantin & Fabozzi, Frank J., 2017. "Fuzzy decision fusion approach for loss-given-default modeling," European Journal of Operational Research, Elsevier, vol. 262(2), pages 780-791.
    4. Pascal François, 2019. "The Determinants of Market-Implied Recovery Rates," Risks, MDPI, vol. 7(2), pages 1-15, May.
    5. Wang, Hong & Forbes, Catherine S. & Fenech, Jean-Pierre & Vaz, John, 2020. "The determinants of bank loan recovery rates in good times and bad – New evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 875-897.
    6. Kaposty, Florian & Kriebel, Johannes & Löderbusch, Matthias, 2020. "Predicting loss given default in leasing: A closer look at models and variable selection," International Journal of Forecasting, Elsevier, vol. 36(2), pages 248-266.
    7. Bellotti, Anthony & Brigo, Damiano & Gambetti, Paolo & Vrins, Frédéric, 2021. "Forecasting recovery rates on non-performing loans with machine learning," International Journal of Forecasting, Elsevier, vol. 37(1), pages 428-444.
    8. Xia, Yufei & Zhao, Junhao & He, Lingyun & Li, Yinguo & Yang, Xiaoli, 2021. "Forecasting loss given default for peer-to-peer loans via heterogeneous stacking ensemble approach," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1590-1613.
    9. Jennifer Betz & Ralf Kellner & Daniel Rösch, 2021. "Time matters: How default resolution times impact final loss rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 619-644, June.
    10. Hurlin, Christophe & Leymarie, Jérémy & Patin, Antoine, 2018. "Loss functions for Loss Given Default model comparison," European Journal of Operational Research, Elsevier, vol. 268(1), pages 348-360.
    11. Sopitpongstorn, Nithi & Silvapulle, Param & Gao, Jiti & Fenech, Jean-Pierre, 2021. "Local logit regression for loan recovery rate," Journal of Banking & Finance, Elsevier, vol. 126(C).
    12. Nazemi, Abdolreza & Fabozzi, Frank J., 2018. "Macroeconomic variable selection for creditor recovery rates," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 14-25.
    13. Kellner, Ralf & Nagl, Maximilian & Rösch, Daniel, 2022. "Opening the black box – Quantile neural networks for loss given default prediction," Journal of Banking & Finance, Elsevier, vol. 134(C).
    14. Marc Gürtler & Marvin Zöllner, 2023. "Heterogeneities among credit risk parameter distributions: the modality defines the best estimation method," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 251-287, March.
    15. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    16. Nazemi, Abdolreza & Heidenreich, Konstantin & Fabozzi, Frank J., 2018. "Improving corporate bond recovery rate prediction using multi-factor support vector regressions," European Journal of Operational Research, Elsevier, vol. 271(2), pages 664-675.
    17. Li, Aimin & Li, Zhiyong & Bellotti, Anthony, 2023. "Predicting loss given default of unsecured consumer loans with time-varying survival scores," Pacific-Basin Finance Journal, Elsevier, vol. 78(C).
    18. Hwang, Ruey-Ching & Chu, Chih-Kang & Yu, Kaizhi, 2020. "Predicting LGD distributions with mixed continuous and discrete ordinal outcomes," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1003-1022.
    19. Saygin Sahinoz & Evren Erdogan Cosar, 2020. "Quantifying uncertainty and identifying its impacts on the Turkish economy," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 47(2), pages 365-387, May.
    20. Hui-Ching Chuang & Jau-er Chen, 2023. "Exploring Industry-Distress Effects on Loan Recovery: A Double Machine Learning Approach for Quantiles," Econometrics, MDPI, vol. 11(1), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:6:p:124-:d:837184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.