IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v13y2024i8p104-d1442238.html
   My bibliography  Save this article

Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia

Author

Listed:
  • Vasilije Matijašević

    (Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia)

  • Zdeněk Beňo

    (Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic)

  • Viktor Tekáč

    (Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic)

  • Van Minh Duong

    (Faculty of Environmental Technology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic)

Abstract

This study evaluated the suitability of two types of beech wood pellets as renewable, low-emission biofuel sources in order to combat the energy mix and poor air quality in Serbia. Key solid biofuel characteristics, including the heating values (18.5–18.7 MJ/kg), moisture content (5.54–7.16%), and volatile matter (82.4–84.4%) were assessed according to established standards. The elemental composition (mass fractions of 48.26–48.53% carbon, 6% hydrogen, 0.12–0.2% nitrogen, 0.02% sulfur, non-detected chlorine) and ash content (0.46–1.2%) demonstrated that the analyzed beech pellets met the criteria for high-quality classification, aligning with the ENplus A1 and ENplus A2 standards. The emissions of O 2 , CO 2 , CO, NO x , SO 2 , and TOC were quantified in the flue gas of an automatic residential pellet stove and compared with the existing literature. While combustion of the beech pellets yielded low emissions of SO 2 (6 mg/m 3 ) and NO x (188 mg/m 3 ), the fluctuating CO (1456–2064 mg/m 3 ) and TOC (26.75–61.46 mg/m 3 ) levels were influenced by the appliance performance. These findings underscore the potential of beech wood pellets as a premium solid biofuel option for Serbian households, offering implications for both end-users and policymakers.

Suggested Citation

  • Vasilije Matijašević & Zdeněk Beňo & Viktor Tekáč & Van Minh Duong, 2024. "Characterization of Beech Wood Pellets as Low-Emission Solid Biofuel for Residential Heating in Serbia," Resources, MDPI, vol. 13(8), pages 1-14, July.
  • Handle: RePEc:gam:jresou:v:13:y:2024:i:8:p:104-:d:1442238
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/13/8/104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/13/8/104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. García-Maraver, A. & Popov, V. & Zamorano, M., 2011. "A review of European standards for pellet quality," Renewable Energy, Elsevier, vol. 36(12), pages 3537-3540.
    2. Nunes, João & Freitas, Helena, 2016. "An indicator to assess the pellet production per forest area. A case-study from Portugal," Forest Policy and Economics, Elsevier, vol. 70(C), pages 99-105.
    3. Li, Jun & Brzdekiewicz, Artur & Yang, Weihong & Blasiak, Wlodzimierz, 2012. "Co-firing based on biomass torrefaction in a pulverized coal boiler with aim of 100% fuel switching," Applied Energy, Elsevier, vol. 99(C), pages 344-354.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rudolfsson, Magnus & Borén, Eleonora & Pommer, Linda & Nordin, Anders & Lestander, Torbjörn A., 2017. "Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass," Applied Energy, Elsevier, vol. 191(C), pages 414-424.
    2. Duong, Van Minh & Flener, Ursula & Hrbek, Jitka & Hofbauer, Hermann, 2022. "Emission characteristics from the combustion of Acacia Mangium in the automatic feeding pellet stove," Renewable Energy, Elsevier, vol. 186(C), pages 183-194.
    3. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    4. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    5. Tran, Khanh-Quang & Luo, Xun & Seisenbaeva, Gulaim & Jirjis, Raida, 2013. "Stump torrefaction for bioenergy application," Applied Energy, Elsevier, vol. 112(C), pages 539-546.
    6. Miedema, Jan H. & Benders, René M.J. & Moll, Henri C. & Pierie, Frank, 2017. "Renew, reduce or become more efficient? The climate contribution of biomass co-combustion in a coal-fired power plant," Applied Energy, Elsevier, vol. 187(C), pages 873-885.
    7. Leonel J. R. Nunes & João C. O. Matias, 2020. "Biomass Torrefaction as a Key Driver for the Sustainable Development and Decarbonization of Energy Production," Sustainability, MDPI, vol. 12(3), pages 1-9, January.
    8. Mola-Yudego, Blas & Selkimäki, Mari & González-Olabarria, José Ramón, 2014. "Spatial analysis of the wood pellet production for energy in Europe," Renewable Energy, Elsevier, vol. 63(C), pages 76-83.
    9. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    10. Hossain, Tasmin & Jones, Daniela S. & Godfrey, Edward & Saloni, Daniel & Sharara, Mahmoud & Hartley, Damon S., 2024. "Characterizing value-added pellets obtained from blends of miscanthus, corn stover, and switchgrass," Renewable Energy, Elsevier, vol. 227(C).
    11. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    12. Bo Zhu & Bichen Shang & Xiao Guo & Chao Wu & Xiaoqiang Chen & Lingling Zhao, 2022. "Study on Combustion Characteristics and NOx Formation in 600 MW Coal-Fired Boiler Based on Numerical Simulation," Energies, MDPI, vol. 16(1), pages 1-30, December.
    13. Chen, Wei-Hsin & Peng, Jianghong & Bi, Xiaotao T., 2015. "A state-of-the-art review of biomass torrefaction, densification and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 847-866.
    14. Agbor, Ezinwa & Oyedun, Adetoyese Olajire & Zhang, Xiaolei & Kumar, Amit, 2016. "Integrated techno-economic and environmental assessments of sixty scenarios for co-firing biomass with coal and natural gas," Applied Energy, Elsevier, vol. 169(C), pages 433-449.
    15. Xue, Junjie & Chellappa, Thiago & Ceylan, Selim & Goldfarb, Jillian L., 2018. "Enhancing biomass + coal Co-firing scenarios via biomass torrefaction and carbonization: Case study of avocado pit biomass and Illinois No. 6 coal," Renewable Energy, Elsevier, vol. 122(C), pages 152-162.
    16. Mostafa, Mohamed E. & Hu, Song & Wang, Yi & Su, Sheng & Hu, Xun & Elsayed, Saad A. & Xiang, Jun, 2019. "The significance of pelletization operating conditions: An analysis of physical and mechanical characteristics as well as energy consumption of biomass pellets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 332-348.
    17. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    18. Pronobis, Marek & Wejkowski, Robert & Kalisz, Sylwester & Ciukaj, Szymon, 2023. "Conversion of a pulverized coal boiler into a torrefied biomass boiler," Energy, Elsevier, vol. 262(PB).
    19. Chen, Yun-Chun & Chen, Wei-Hsin & Lin, Bo-Jhih & Chang, Jo-Shu & Ong, Hwai Chyuan, 2016. "Impact of torrefaction on the composition, structure and reactivity of a microalga residue," Applied Energy, Elsevier, vol. 181(C), pages 110-119.
    20. Wu, Dongyin & Wang, Yuhao & Wang, Yang & Li, Sen & Wei, Xiaolin, 2016. "Release of alkali metals during co-firing biomass and coal," Renewable Energy, Elsevier, vol. 96(PA), pages 91-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:13:y:2024:i:8:p:104-:d:1442238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.