IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v12y2023i1p12-d1029491.html
   My bibliography  Save this article

Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press

Author

Listed:
  • Joseph I. Orisaleye

    (Department of Mechanical Engineering, University of Lagos, Akoka 101017, Nigeria)

  • Simeon O. Jekayinfa

    (Department of Agricultural Engineering, Ladoke Akintola University of Technology, Ogbomoso 210214, Nigeria)

  • Christian Dittrich

    (Leibniz Institute of Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany)

  • Okey F. Obi

    (Leibniz Institute of Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
    Agricultural and Bioresources Engineering Department, University of Nigeria, Nsukka 410001, Nigeria)

  • Ralf Pecenka

    (Leibniz Institute of Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany)

Abstract

Biomass has a high potential to contribute towards resolving the energy deficit. Processing biomass into solid fuels enhances its use in various bioenergy conversion technologies. The quality of densified biomass depends on several variables. The investigation of the effect of densification parameters on briquette quality is necessary for process optimization. This study investigates the influence of die temperature (100, 120, 140 °C) and feeding speed (2.4, 2.9, 3.3 mm s −1 ) on the quality of briquettes produced from poplar using a hydraulic biomass briquetting machine. The density of the briquettes ranged between 746.7 and 916.8 kg m −3 , the mechanical durability ranged from 97.4 to 98.4%, and the water resistance index was between 91.6 and 96.1%. The results show that the temperature was statistically significant ( p < 0.05) on the density, mechanical durability and water resistance of biomass briquettes. The feeding speed was statistically significant ( p < 0.05) on the density and water resistance. The interaction of temperature and feeding speed was statistically significant ( p < 0.05) on all properties considered. The results obtained in this study are useful for optimizing the quality of briquettes produced using the hydraulic piston press.

Suggested Citation

  • Joseph I. Orisaleye & Simeon O. Jekayinfa & Christian Dittrich & Okey F. Obi & Ralf Pecenka, 2023. "Effects of Feeding Speed and Temperature on Properties of Briquettes from Poplar Wood Using a Hydraulic Briquetting Press," Resources, MDPI, vol. 12(1), pages 1-16, January.
  • Handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:12-:d:1029491
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/12/1/12/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/12/1/12/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Iuliana Gageanu & Dan Cujbescu & Catalin Persu & Paula Tudor & Petru Cardei & Mihai Matache & Valentin Vladut & Sorin Biris & Iulian Voicea & Nicoleta Ungureanu, 2021. "Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass," Energies, MDPI, vol. 14(14), pages 1-22, July.
    2. Okey Francis Obi & Ralf Pecenka & Michael J. Clifford, 2022. "A Review of Biomass Briquette Binders and Quality Parameters," Energies, MDPI, vol. 15(7), pages 1-22, March.
    3. Zhang, Jing & Zheng, Decong & Wu, Kai & Zhang, Xiuquan, 2019. "The optimum conditions for preparing briquette made from millet bran using Generalized Distance Function," Renewable Energy, Elsevier, vol. 140(C), pages 692-703.
    4. Lisowski, Aleksander & Pajor, Małgorzata & Świętochowski, Adam & Dąbrowska, Magdalena & Klonowski, Jacek & Mieszkalski, Leszek & Ekielski, Adam & Stasiak, Mateusz & Piątek, Michał, 2019. "Effects of moisture content, temperature, and die thickness on the compaction process, and the density and strength of walnut shell pellets," Renewable Energy, Elsevier, vol. 141(C), pages 770-781.
    5. Simeon Olatayo Jekayinfa & Joseph Ifeolu Orisaleye & Ralf Pecenka, 2020. "An Assessment of Potential Resources for Biomass Energy in Nigeria," Resources, MDPI, vol. 9(8), pages 1-43, August.
    6. U. A. Essien & P. K. Oke, 2019. "Modelling the effect of compaction pressure on the densification of agricultural waste briquettes," African Journal of Science, Technology, Innovation and Development, Taylor & Francis Journals, vol. 11(5), pages 579-588, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azwifunimunwe Tshikovhi & Tshwafo Ellias Motaung, 2023. "Technologies and Innovations for Biomass Energy Production," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    2. Grzegorz Łysiak & Ryszard Kulig & Alina Kowalczyk-Juśko, 2023. "Toward New Value-Added Products Made from Anaerobic Digestate: Part 2—Effect of Loading Level on the Densification of Solid Digestate," Sustainability, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Liu & Da Teng & Yan Zhu & Xingde Wang & Hanyang Wang, 2023. "Optimization of Process Parameters for Pellet Production from Corn Stalk Rinds Using Box–Behnken Design," Energies, MDPI, vol. 16(12), pages 1-20, June.
    2. Anita Konieczna & Kamila Mazur & Adam Koniuszy & Andrzej Gawlik & Igor Sikorski, 2022. "Thermal Energy and Exhaust Emissions of a Gasifier Stove Feeding Pine and Hemp Pellets," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Jianbiao Liu & Xuya Jiang & Yanhao Yuan & Huanhuan Chen & Wenbin Zhang & Hongzhen Cai & Feng Gao, 2022. "Densification of Yak Manure Biofuel Pellets and Evaluation of Parameters: Effects on Properties," Energies, MDPI, vol. 15(5), pages 1-14, February.
    4. Aleksandra Minajeva & Algirdas Jasinskas & Rolandas Domeika & Edvardas Vaiciukevičius & Egidijus Lemanas & Stanisław Bielski, 2021. "The Study of the Faba Bean Waste and Potato Peels Recycling for Pellet Production and Usage for Energy Conversion," Energies, MDPI, vol. 14(10), pages 1-14, May.
    5. Somoye, Oluwatoyin Abidemi, 2023. "Energy crisis and renewable energy potentials in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    6. Pegoretti Leite de Souza, Hector Jesus & Muñoz, Fernando & Mendonça, Regis Teixeira & Sáez, Katia & Olave, Rodrigo & Segura, Cristina & de Souza, Daniel P.L. & de Paula Protásio, Thiago & Rodríguez-So, 2021. "Influence of lignin distribution, physicochemical characteristics and microstructure on the quality of biofuel pellets made from four different types of biomass," Renewable Energy, Elsevier, vol. 163(C), pages 1802-1816.
    7. Dorota Janiszewska & Luiza Ossowska, 2022. "The Role of Agricultural Biomass as a Renewable Energy Source in European Union Countries," Energies, MDPI, vol. 15(18), pages 1-14, September.
    8. Gendek, Arkadiusz & Aniszewska, Monika & Owoc, Danuta & Tamelová, Barbora & Malaťák, Jan & Velebil, Jan & Krilek, Jozef, 2023. "Physico-mechanical and energy properties of pellets made from ground walnut shells, coniferous tree cones and their mixtures," Renewable Energy, Elsevier, vol. 211(C), pages 248-258.
    9. Zongyou Ben & Xubo Zhang & Duoxing Yang & Kunjie Chen, 2023. "An Experimental and Numerical Study for Discrete Element Model Parameters Calibration: Gluten Pellets," Agriculture, MDPI, vol. 13(4), pages 1-18, March.
    10. Mika Pahnila & Aki Koskela & Petri Sulasalmi & Timo Fabritius, 2023. "A Review of Pyrolysis Technologies and the Effect of Process Parameters on Biocarbon Properties," Energies, MDPI, vol. 16(19), pages 1-27, October.
    11. Tianyou Chen & Honglei Jia & Shengwei Zhang & Xumin Sun & Yuqiu Song & Hongfang Yuan, 2020. "Optimization of Cold Pressing Process Parameters of Chopped Corn Straws for Fuel," Energies, MDPI, vol. 13(3), pages 1-21, February.
    12. Granado, Marcos Paulo Patta & Suhogusoff, Yuri Valentinovich Machado & Santos, Luis Ricardo Oliveira & Yamaji, Fabio Minoru & De Conti, Andrea Cressoni, 2021. "Effects of pressure densification on strength and properties of cassava waste briquettes," Renewable Energy, Elsevier, vol. 167(C), pages 306-312.
    13. Okey Francis Obi & Ralf Pecenka, 2023. "Briquetting of Poplar Wood from Short Rotation Coppice—The Effects of Moisture Content and Hammer Mill Screen Size," Energies, MDPI, vol. 16(3), pages 1-14, February.
    14. Tomasz Noszczyk & Arkadiusz Dyjakon & Jacek A. Koziel, 2021. "Kinetic Parameters of Nut Shells Pyrolysis," Energies, MDPI, vol. 14(3), pages 1-22, January.
    15. Julija Konstantinavičienė, 2023. "Assessment of Potential of Forest Wood Biomass in Terms of Sustainable Development," Sustainability, MDPI, vol. 15(18), pages 1, September.
    16. Christian Barika Igbeghe & Tamás Mizik & Zoltán Gabnai & Attila Bai, 2023. "Trends and Characterization of Primary Energy Sources by Energy and Food Prices," Energies, MDPI, vol. 16(7), pages 1-18, March.
    17. Amira Toumi & Natalia Politaeva & Saša Đurović & Liliya Mukhametova & Svetlana Ilyashenko, 2022. "Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana," Resources, MDPI, vol. 11(2), pages 1-13, February.
    18. Iuliana Gageanu & Dan Cujbescu & Catalin Persu & Paula Tudor & Petru Cardei & Mihai Matache & Valentin Vladut & Sorin Biris & Iulian Voicea & Nicoleta Ungureanu, 2021. "Influence of Input and Control Parameters on the Process of Pelleting Powdered Biomass," Energies, MDPI, vol. 14(14), pages 1-22, July.
    19. Jarmila Zimmermannova & Richard Smilnak & Michaela Perunova & Omar Ameir, 2022. "Coal or Biomass? Case Study of Consumption Behaviour of Households in the Czech Republic," Energies, MDPI, vol. 16(1), pages 1-17, December.
    20. Flavio Borfecchia & Paola Crinò & Angelo Correnti & Anna Farneti & Luigi De Cecco & Domenica Masci & Luciano Blasi & Domenico Iantosca & Vito Pignatelli & Carla Micheli, 2020. "Assessing the Impact of Water Salinization Stress on Biomass Yield of Cardoon Bio-Energetic Crops through Remote Sensing Techniques," Resources, MDPI, vol. 9(10), pages 1-27, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:12:y:2023:i:1:p:12-:d:1029491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.