IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2182-d458328.html
   My bibliography  Save this article

Efficient and Secure Strategy for Energy Systems of Interconnected Farmers′ Associations to Meet Variable Energy Demand

Author

Listed:
  • Maria Simona Raboaca

    (National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Valcea, Uzinei Street, No. 4, P.O. Box 7 Raureni, 240050 Ramnicu Valcea, Romania
    Civil Engineering Department, Technical University of Cluj-Napoca, Memorandumului Street, No. 28, 400114 Cluj-Napoca, Romania
    Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, 720229 Suceava, Romania)

  • Nicu Bizon

    (National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Rm. Valcea, Uzinei Street, No. 4, P.O. Box 7 Raureni, 240050 Ramnicu Valcea, Romania
    Faculty of Electronics, Communications and Computers, University of Pitesti, 110040 Pitesti, Romania)

  • Catalin Trufin

    (R&D Department, ASSIST Software, 720043 Suceava, Romania)

  • Florentina Magda Enescu

    (Faculty of Electronics, Communications and Computers, University of Pitesti, 110040 Pitesti, Romania)

Abstract

Since ancient times, agriculture has been one of the most important resources of national development. At a national level, clean energy is a strategic objective of Romania, in accordance with the EC directive 2016/30.11.2016 (“Clean Energy for All”). At a European level, the European Commission published in January 2019 the “Towards a Sustainable Europe by 2030” strategy, highlighting the strategic importance of the Internet of Things (IoT) and blockchain technologies. In this context, the synergy between the energy management of a hybrid energy system and blockchain technology, applied to farmers’ associations, represents a priority research direction in the field of information and communication technology, blockchain, and security. This paper presents the integration of the management of the energy produced by photovoltaic panels owned by farmers’ association, to support the variable energy demand (necessary for water pumps, charging stations of the electric agricultural machines, the animal farms, and the auxiliary equipment) based on the IoT, DLT, blockchain technologies and smart contracts applied to farmers associations registered as users of the SmartFarm platform.

Suggested Citation

  • Maria Simona Raboaca & Nicu Bizon & Catalin Trufin & Florentina Magda Enescu, 2020. "Efficient and Secure Strategy for Energy Systems of Interconnected Farmers′ Associations to Meet Variable Energy Demand," Mathematics, MDPI, vol. 8(12), pages 1-30, December.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2182-:d:458328
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianjun Sun & Jiaqi Yan & Kem Z. K. Zhang, 2016. "Blockchain-based sharing services: What blockchain technology can contribute to smart cities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-9, December.
    2. Ahl, Amanda & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2019. "Review of blockchain-based distributed energy: Implications for institutional development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 200-211.
    3. van Leeuwen, Gijs & AlSkaif, Tarek & Gibescu, Madeleine & van Sark, Wilfried, 2020. "An integrated blockchain-based energy management platform with bilateral trading for microgrid communities," Applied Energy, Elsevier, vol. 263(C).
    4. Asma Khatoon & Piyush Verma & Jo Southernwood & Beth Massey & Peter Corcoran, 2019. "Blockchain in Energy Efficiency: Potential Applications and Benefits," Energies, MDPI, vol. 12(17), pages 1-14, August.
    5. Önder, Irem & Treiblmaier, Horst, 2018. "Blockchain and tourism: Three research propositions," Annals of Tourism Research, Elsevier, vol. 72(C), pages 180-182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    2. Mohannad Alobid & Said Abujudeh & István Szűcs, 2022. "The Role of Blockchain in Revolutionizing the Agricultural Sector," Sustainability, MDPI, vol. 14(7), pages 1-15, April.
    3. Ionuț-Adrian Drăguleasa & Amalia Niță & Mirela Mazilu & Gheorghe Curcan, 2023. "Spatio-Temporal Distribution and Trends of Major Agricultural Crops in Romania Using Interactive Geographic Information System Mapping," Sustainability, MDPI, vol. 15(20), pages 1-25, October.
    4. Bhargav Appasani & Sunil Kumar Mishra & Amitkumar V. Jha & Santosh Kumar Mishra & Florentina Magda Enescu & Ioan Sorin Sorlei & Fernando Georgel Bîrleanu & Noureddine Takorabet & Phatiphat Thounthong , 2022. "Blockchain-Enabled Smart Grid Applications: Architecture, Challenges, and Solutions," Sustainability, MDPI, vol. 14(14), pages 1-33, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oskar Juszczyk & Khuram Shahzad, 2022. "Blockchain Technology for Renewable Energy: Principles, Applications and Prospects," Energies, MDPI, vol. 15(13), pages 1-24, June.
    2. Jagdish Prasad Nepal & Nuttaya Yuangyai & Saroj Gyawali & Chumpol Yuangyai, 2022. "Blockchain-Based Smart Renewable Energy: Review of Operational and Transactional Challenges," Energies, MDPI, vol. 15(13), pages 1-21, July.
    3. Yuki Matsuda & Yuto Yamazaki & Hiromu Oki & Yasuhiro Takeda & Daishi Sagawa & Kenji Tanaka, 2021. "Demonstration of Blockchain Based Peer to Peer Energy Trading System with Real-Life Used PHEV and HEMS Charge Control," Energies, MDPI, vol. 14(22), pages 1-12, November.
    4. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    5. Yildizbasi, Abdullah, 2021. "Blockchain and renewable energy: Integration challenges in circular economy era," Renewable Energy, Elsevier, vol. 176(C), pages 183-197.
    6. Ahl, Amanda & Goto, Mika & Yarime, Masaru & Tanaka, Kenji & Sagawa, Daishi, 2022. "Challenges and opportunities of blockchain energy applications: Interrelatedness among technological, economic, social, environmental, and institutional dimensions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    7. Nan Jiang & Qi Han & Guohua Zhu, 2023. "A Three-Dimensional Analytical Framework: Textual Analysis and Comparison of Chinese and US Energy Blockchain Policies," Sustainability, MDPI, vol. 15(6), pages 1-28, March.
    8. Kirli, Desen & Couraud, Benoit & Robu, Valentin & Salgado-Bravo, Marcelo & Norbu, Sonam & Andoni, Merlinda & Antonopoulos, Ioannis & Negrete-Pincetic, Matias & Flynn, David & Kiprakis, Aristides, 2022. "Smart contracts in energy systems: A systematic review of fundamental approaches and implementations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Roth, Tamara & Utz, Manuel & Baumgarte, Felix & Rieger, Alexander & Sedlmeir, Johannes & Strüker, Jens, 2022. "Electricity powered by blockchain: A review with a European perspective," Applied Energy, Elsevier, vol. 325(C).
    10. Juan F. Prados-Castillo & Miguel Ángel Solano-Sánchez & Pilar Guaita Fernández & José Manuel Guaita Martínez, 2023. "Potential of the Crypto Economy in Financial Management and Fundraising for Tourism," Sustainability, MDPI, vol. 15(6), pages 1-15, March.
    11. Marco Valeri & Rodolfo Baggio, 2021. "A critical reflection on the adoption of blockchain in tourism," Information Technology & Tourism, Springer, vol. 23(2), pages 121-132, June.
    12. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    13. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    14. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    15. Muhammad Waseem & Muhammad Adnan Khan & Arman Goudarzi & Shah Fahad & Intisar Ali Sajjad & Pierluigi Siano, 2023. "Incorporation of Blockchain Technology for Different Smart Grid Applications: Architecture, Prospects, and Challenges," Energies, MDPI, vol. 16(2), pages 1-29, January.
    16. Büttgen, Marion & al.,, 2021. "Blockchain in Service Management and Service Research - Developing a Research Agenda and Managerial Implications," SMR - Journal of Service Management Research, Nomos Verlagsgesellschaft mbH & Co. KG, vol. 5(2), pages 71-102.
    17. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    18. Tandon, Anushree & Kaur, Puneet & Mäntymäki, Matti & Dhir, Amandeep, 2021. "Blockchain applications in management: A bibliometric analysis and literature review," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    19. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.
    20. Lee, Jei Young, 2019. "A decentralized token economy: How blockchain and cryptocurrency can revolutionize business," Business Horizons, Elsevier, vol. 62(6), pages 773-784.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2182-:d:458328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.