Self-Weighted Quantile Estimation for Drift Coefficients of Ornstein–Uhlenbeck Processes with Jumps and Its Application to Statistical Arbitrage
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma related OU processes: Application to the Pricing of Energy Derivatives," Papers 2004.06786, arXiv.org.
- Shibin Zhang & Xinsheng Zhang, 2013. "A least squares estimator for discretely observed Ornstein–Uhlenbeck processes driven by symmetric α-stable motions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 89-103, February.
- Shu, Huisheng & Jiang, Ziwei & Zhang, Xuekang, 2023. "Parameter estimation for integrated Ornstein–Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 199(C).
- Griffin, J.E. & Steel, M.F.J., 2006.
"Inference with non-Gaussian Ornstein-Uhlenbeck processes for stochastic volatility,"
Journal of Econometrics, Elsevier, vol. 134(2), pages 605-644, October.
- James E. Griffin & Mark F.J. Steel, 2002. "Inference With Non-Gaussian Ornstein-Uhlenbeck Processes for Stochastic Volatility," Econometrics 0201002, University Library of Munich, Germany, revised 04 Apr 2003.
- Piergiacomo Sabino, 2020. "Exact Simulation of Variance Gamma-Related OU Processes: Application to the Pricing of Energy Derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 27(3), pages 207-227, May.
- Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
- Zhang, Dingwen, 2025. "Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations," Statistics & Probability Letters, Elsevier, vol. 216(C).
- Gareth O. Roberts & Omiros Papaspiliopoulos & Petros Dellaportas, 2004. "Bayesian inference for non‐Gaussian Ornstein–Uhlenbeck stochastic volatility processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(2), pages 369-393, May.
- Hogan, Steve & Jarrow, Robert & Teo, Melvyn & Warachka, Mitch, 2004. "Testing market efficiency using statistical arbitrage with applications to momentum and value strategies," Journal of Financial Economics, Elsevier, vol. 73(3), pages 525-565, September.
- Geurt Jongbloed & Frank H. Van Der Meulen, 2006. "Parametric Estimation for Subordinators and Induced OU Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 825-847, December.
- Hu, Yaozhong & Long, Hongwei, 2009. "Least squares estimator for Ornstein-Uhlenbeck processes driven by [alpha]-stable motions," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2465-2480, August.
- Bertram, William K., 2010. "Analytic solutions for optimal statistical arbitrage trading," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(11), pages 2234-2243.
- Oleg Bondarenko, 2003. "Statistical Arbitrage and Securities Prices," The Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 875-919, July.
- Suzanne S. Lee & Per A. Mykland, 2008. "Jumps in Financial Markets: A New Nonparametric Test and Jump Dynamics," The Review of Financial Studies, Society for Financial Studies, vol. 21(6), pages 2535-2563, November.
- Long, Hongwei, 2009. "Least squares estimator for discretely observed Ornstein-Uhlenbeck processes with small Lévy noises," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 2076-2085, October.
- Alazemi, Fares & Alsenafi, Abdulaziz & Chen, Yong & Zhou, Hongjuan, 2024. "Parameter estimation for the complex fractional Ornstein–Uhlenbeck processes with Hurst parameter H∈(0,12)," Chaos, Solitons & Fractals, Elsevier, vol. 188(C).
- Board, J. & Sutcliffe, C., 1996. "The Effects of Spot Transparency on Bid-Ask Spreads and Volume of Traded Share Options," Papers 96-126, University of Southampton - Department of Accounting and Management Science.
- Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kevin W. Lu, 2022. "Calibration for multivariate Lévy-driven Ornstein-Uhlenbeck processes with applications to weak subordination," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 365-396, July.
- Shu, Yin & Feng, Qianmei & Liu, Hao, 2019. "Using degradation-with-jump measures to estimate life characteristics of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
- Almut Veraart & Luitgard Veraart, 2012.
"Stochastic volatility and stochastic leverage,"
Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
- Almut E. D. Veraart & Luitgard A. M. Veraart, 2009. "Stochastic volatility and stochastic leverage," CREATES Research Papers 2009-20, Department of Economics and Business Economics, Aarhus University.
- Gonzalez, Jhonny & Moriarty, John & Palczewski, Jan, 2017. "Bayesian calibration and number of jump components in electricity spot price models," Energy Economics, Elsevier, vol. 65(C), pages 375-388.
- Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
- Yan-Feng Wu & Xiangyu Yang & Jian-Qiang Hu, 2024. "Method of Moments Estimation for Affine Stochastic Volatility Models," Papers 2408.09185, arXiv.org.
- Roberto León-González, 2019.
"Efficient Bayesian inference in generalized inverse gamma processes for stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 38(8), pages 899-920, September.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," Working Paper series 19_14, Rimini Centre for Economic Analysis.
- Roberto Leon-Gonzalez, 2018. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 17-16, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2014. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 14-12, National Graduate Institute for Policy Studies.
- Roberto Leon-Gonzalez, 2015. "Efficient Bayesian Inference in Generalized Inverse Gamma Processes for Stochastic Volatility," GRIPS Discussion Papers 15-17, National Graduate Institute for Policy Studies.
- Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
- Xuekang Zhang & Huisheng Shu & Haoran Yi, 2023. "Parameter Estimation for Ornstein–Uhlenbeck Driven by Ornstein–Uhlenbeck Processes with Small Lévy Noises," Journal of Theoretical Probability, Springer, vol. 36(1), pages 78-98, March.
- Emanuele Taufer, 2008. "Characteristic function estimation of non-Gaussian Ornstein-Uhlenbeck processes," DISA Working Papers 0805, Department of Computer and Management Sciences, University of Trento, Italy, revised 07 Jul 2008.
- Guangjun Shen & Qian Yu, 2019. "Least squares estimator for Ornstein–Uhlenbeck processes driven by fractional Lévy processes from discrete observations," Statistical Papers, Springer, vol. 60(6), pages 2253-2271, December.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2023.
"Statistical arbitrage: factor investing approach,"
OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(4), pages 1295-1331, December.
- Akyildirim, Erdinc & Goncu, Ahmet & Hekimoglu, Alper & Nguyen, Duc Khuong & Sensoy, Ahmet, 2021. "Statistical arbitrage: Factor investing approach," MPRA Paper 105766, University Library of Munich, Germany.
- Erdinc Akyildirim & Ahmet Goncu & Alper Hekimoglu & Duc Khuong Nguyen & Ahmet Sensoy, 2021. "Statistical Arbitrage: Factor Investing Approach," Working Papers 2021-003, Department of Research, Ipag Business School.
- Piergiacomo Sabino, 2021. "Pricing Energy Derivatives in Markets Driven by Tempered Stable and CGMY Processes of Ornstein-Uhlenbeck Type," Papers 2103.13252, arXiv.org.
- Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
- Nicola Cufaro Petroni & Piergiacomo Sabino, 2020. "Tempered stable distributions and finite variation Ornstein-Uhlenbeck processes," Papers 2011.09147, arXiv.org.
- Griffin, J.E. & Steel, M.F.J., 2010.
"Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes,"
Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2594-2608, November.
- Griffin, Jim & Steel, Mark F.J., 2008. "Bayesian inference with stochastic volatility models using continuous superpositions of non-Gaussian Ornstein-Uhlenbeck processes," MPRA Paper 11071, University Library of Munich, Germany.
- Yanfeng Wu & Jianqiang Hu & Xiangyu Yang, 2022. "Moment estimators for parameters of Lévy‐driven Ornstein–Uhlenbeck processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 610-639, July.
- Tim Leung & Kevin W. Lu, 2023.
"Monte Carlo Simulation for Trading Under a Lévy-Driven Mean-Reverting Framework,"
Applied Mathematical Finance, Taylor & Francis Journals, vol. 30(4), pages 207-230, July.
- Tim Leung & Kevin W. Lu, 2023. "Monte Carlo Simulation for Trading Under a L\'evy-Driven Mean-Reverting Framework," Papers 2309.05512, arXiv.org, revised Jan 2024.
- Piergiacomo Sabino, 2021. "Normal Tempered Stable Processes and the Pricing of Energy Derivatives," Papers 2105.03071, arXiv.org.
More about this item
Keywords
self-weighted quantile estimation; drift coefficients; O-U process with jumps; heavy-tailed distributions; statistical arbitrage; asymptotic normality; Monte Carlo simulations;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:9:p:1399-:d:1641902. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.