IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v216y2025ics0167715224002554.html
   My bibliography  Save this article

Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations

Author

Listed:
  • Zhang, Dingwen

Abstract

Low-frequency observations are a common occurrence in real-world applications, making statistical inference for stochastic processes driven by stochastic differential equations (SDEs) based on such observations an important issue. In this paper, we investigate the statistical inference for the Ornstein–Uhlenbeck (OU) process using low-frequency observations. We propose modified least squares estimators (MLSEs) for the drift parameters and a modified quadratic variation estimator for the diffusion parameter based on the solution of the OU process. The MLSEs are derived heuristically using the nonlinear least squares method, despite the OU process satisfying a linear SDE. Unlike previous approaches, these modified estimators are asymptotically unbiased. Leveraging the ergodic properties of the OU process, we also propose ergodic estimators for the three parameters. The asymptotic behavior of these estimators is established using the ergodic properties and central limit theorem for the OU process, achieved through linear model techniques and multivariate Markov chain central limit theorem. Monte Carlo simulation results are presented to illustrate and support our theoretical findings.

Suggested Citation

  • Zhang, Dingwen, 2025. "Statistical inference for Ornstein–Uhlenbeck processes based on low-frequency observations," Statistics & Probability Letters, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002554
    DOI: 10.1016/j.spl.2024.110286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224002554
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amemiya, Takeshi, 1973. "Regression Analysis when the Dependent Variable is Truncated Normal," Econometrica, Econometric Society, vol. 41(6), pages 997-1016, November.
    2. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    3. Yaozhong Hu & David Nualart & Hongjuan Zhou, 2019. "Parameter estimation for fractional Ornstein–Uhlenbeck processes of general Hurst parameter," Statistical Inference for Stochastic Processes, Springer, vol. 22(1), pages 111-142, April.
    4. Hu, Yaozhong & Xi, Yuejuan, 2021. "Estimation of all parameters in the reflected Ornstein–Uhlenbeck process from discrete observations," Statistics & Probability Letters, Elsevier, vol. 174(C).
    5. Yiying Cheng & Yaozhong Hu & Hongwei Long, 2020. "Generalized moment estimators for $$\alpha $$α-stable Ornstein–Uhlenbeck motions from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 53-81, April.
    6. Yury Kutoyants, 2012. "On identification of the threshold diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 383-413, April.
    7. Frydman, Roman, 1980. "A Proof of the Consistency of Maximum Likelihood Estimators of Nonlinear Regression Models with Autocorrelated Errors," Econometrica, Econometric Society, vol. 48(4), pages 853-860, May.
    8. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
    2. Kirkby, J.L. & Nguyen, Dang H. & Nguyen, Duy & Nguyen, Nhu N., 2022. "Maximum likelihood estimation of diffusions by continuous time Markov chain," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    3. Camilla LandÊn, 2000. "Bond pricing in a hidden Markov model of the short rate," Finance and Stochastics, Springer, vol. 4(4), pages 371-389.
    4. Álvarez Echeverría Francisco & López Sarabia Pablo & Venegas Martínez Francisco, 2012. "Valuación financiera de proyectos de inversión en nuevas tecnologías con opciones reales," Contaduría y Administración, Accounting and Management, vol. 57(3), pages 115-145, julio-sep.
    5. Matsumura, Marco & Moreira, Ajax & Vicente, José, 2011. "Forecasting the yield curve with linear factor models," International Review of Financial Analysis, Elsevier, vol. 20(5), pages 237-243.
    6. Lin, Bing-Huei, 1999. "Fitting the term structure of interest rates for Taiwanese government bonds," Journal of Multinational Financial Management, Elsevier, vol. 9(3-4), pages 331-352, November.
    7. Gollier, Christian, 2002. "Time Horizon and the Discount Rate," Journal of Economic Theory, Elsevier, vol. 107(2), pages 463-473, December.
    8. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    9. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    10. Ben S. Bernanke & Vincent R. Reinhart & Brian P. Sack, 2004. "Monetary Policy Alternatives at the Zero Bound: An Empirical Assessment," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 35(2), pages 1-100.
    11. Prakash Chakraborty & Kiseop Lee, 2022. "Bond Prices Under Information Asymmetry and a Short Rate with Instantaneous Feedback," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 613-634, June.
    12. Huse, Cristian, 2011. "Term structure modelling with observable state variables," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3240-3252.
    13. Levendorskii, Sergei, 2004. "Consistency conditions for affine term structure models," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 225-261, February.
    14. Nowman, K. Ben & Sorwar, Ghulam, 2005. "Derivative prices from interest rate models: results for Canada, Hong Kong, and United States," International Review of Financial Analysis, Elsevier, vol. 14(4), pages 428-438.
    15. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    16. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    17. Peter Carr & Liuren Wu, 2023. "Decomposing Long Bond Returns: A Decentralized Theory," Review of Finance, European Finance Association, vol. 27(3), pages 997-1026.
    18. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    19. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    20. Hurn, A.S. & Lindsay, K.A., 1999. "Estimating the parameters of stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 48(4), pages 373-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.