IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p595-d1588801.html
   My bibliography  Save this article

Optimizing Water Use in Maize Irrigation with Reinforcement Learning

Author

Listed:
  • Muhammad Alkaff

    (Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Information Technology, Universitas Lambung Mangkurat, Banjarmasin 70123, Indonesia)

  • Abdullah Basuhail

    (Department of Computer Science, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Yuslena Sari

    (Department of Information Technology, Universitas Lambung Mangkurat, Banjarmasin 70123, Indonesia)

Abstract

As global populations grow and environmental constraints intensify, improving agricultural water management is essential for sustainable food production. Traditional irrigation methods often lack adaptability, leading to inefficient water use. Reinforcement learning (RL) offers a promising solution for developing dynamic irrigation strategies that balance productivity and resource conservation. However, agricultural RL tasks are characterized by sparse actions—irrigation only when necessary—and delayed rewards realized at the end of the growing season. This study integrates RL with AquaCrop-OSPy simulations in the Gymnasium framework to develop adaptive irrigation policies for maize. We introduce a reward mechanism that penalizes incremental water usage while rewarding end-of-season yields, encouraging resource-efficient decisions. Using the Proximal Policy Optimization (PPO) algorithm, our RL-driven approach outperforms fixed-threshold irrigation strategies, reducing water use by 29% and increasing profitability by 9%. It achieves a water use efficiency of 76.76 kg/ha/mm, a 40% improvement over optimized soil moisture threshold methods. These findings highlight RL’s potential to address the challenges of sparse actions and delayed rewards in agricultural management, delivering significant environmental and economic benefits.

Suggested Citation

  • Muhammad Alkaff & Abdullah Basuhail & Yuslena Sari, 2025. "Optimizing Water Use in Maize Irrigation with Reinforcement Learning," Mathematics, MDPI, vol. 13(4), pages 1-21, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:595-:d:1588801
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Wit, Allard & Boogaard, Hendrik & Fumagalli, Davide & Janssen, Sander & Knapen, Rob & van Kraalingen, Daniel & Supit, Iwan & van der Wijngaart, Raymond & van Diepen, Kees, 2019. "25 years of the WOFOST cropping systems model," Agricultural Systems, Elsevier, vol. 168(C), pages 154-167.
    2. Alibabaei, Khadijeh & Gaspar, Pedro D. & Assunção, Eduardo & Alirezazadeh, Saeid & Lima, Tânia M., 2022. "Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal," Agricultural Water Management, Elsevier, vol. 263(C).
    3. Kelly, T.D. & Foster, T., 2021. "AquaCrop-OSPy: Bridging the gap between research and practice in crop-water modeling," Agricultural Water Management, Elsevier, vol. 254(C).
    4. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    5. Chen, Mengting & Cui, Yuanlai & Wang, Xiaonan & Xie, Hengwang & Liu, Fangping & Luo, Tongyuan & Zheng, Shizong & Luo, Yufeng, 2021. "A reinforcement learning approach to irrigation decision-making for rice using weather forecasts," Agricultural Water Management, Elsevier, vol. 250(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imran Ali Lakhiar & Haofang Yan & Chuan Zhang & Guoqing Wang & Bin He & Beibei Hao & Yujing Han & Biyu Wang & Rongxuan Bao & Tabinda Naz Syed & Junaid Nawaz Chauhdary & Md. Rakibuzzaman, 2024. "A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints," Agriculture, MDPI, vol. 14(7), pages 1-40, July.
    2. Chen, Mengting & Linker, Raphael & Wu, Conglin & Xie, Hua & Cui, Yuanlai & Luo, Yufeng & Lv, Xinwei & Zheng, Shizong, 2022. "Multi-objective optimization of rice irrigation modes using ACOP-Rice model and historical meteorological data," Agricultural Water Management, Elsevier, vol. 272(C).
    3. Serra, J. & Paredes, P. & Cordovil, CMdS & Cruz, S. & Hutchings, NJ & Cameira, MR, 2023. "Is irrigation water an overlooked source of nitrogen in agriculture?," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Umutoni, Lisa & Samadi, Vidya, 2024. "Application of machine learning approaches in supporting irrigation decision making: A review," Agricultural Water Management, Elsevier, vol. 294(C).
    5. Liu, Xiao & Yang, Dawen, 2021. "Irrigation schedule analysis and optimization under the different combination of P and ET0 using a spatially distributed crop model," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Kelly, T.D. & Foster, T. & Schultz, David M., 2023. "Assessing the value of adapting irrigation strategies within the season," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Gao, Zitian & Guo, Danlu & Ryu, Dongryeol & Western, Andrew W., 2024. "Exploring key factors driving farm-level seasonal irrigation water usage with Bayesian hierarchical modelling," Agricultural Water Management, Elsevier, vol. 294(C).
    8. Shen Tan & Shengchao Qiao & Han Wang & Sheng Chang, 2024. "Predicting Wheat Potential Yield in China Based on Eco-Evolutionary Optimality Principles," Agriculture, MDPI, vol. 14(11), pages 1-15, November.
    9. Shi, Yinfang & Wang, Zhaoyang & Hou, Cheng & Zhang, Puhan, 2022. "Yield estimation of Lycium barbarum L. based on the WOFOST model," Ecological Modelling, Elsevier, vol. 473(C).
    10. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Mary Ollenburger & Page Kyle & Xin Zhang, 2022. "Uncertainties in estimating global potential yields and their impacts for long-term modeling," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(5), pages 1177-1190, October.
    12. Mai, Zijun & He, Yupu & Feng, Chen & Han, Congying & Shi, Yuanzhi & Qi, Wei, 2024. "Multi-objective modeling and optimization of water distribution for canal system considering irrigation coverage in artesian irrigation district," Agricultural Water Management, Elsevier, vol. 301(C).
    13. Sebastian Cano-Berlanga & María-José Solís-Baltodano & Cori Vilella, 2023. "The Art of Sharing Resources: How to Distribute Water during a Drought Period," Games, MDPI, vol. 14(5), pages 1-16, August.
    14. Melpomeni Nikou & Theodoros Mavromatis, 2023. "Demonstrating the Use of the Yield-Gap Concept on Crop Model Calibration in Data-Poor Regions: An Application to CERES-Wheat Crop Model in Greece," Land, MDPI, vol. 12(7), pages 1-19, July.
    15. Batista, Fabiana de Souza & Duku, Confidence & Hein, Lars, 2023. "Deforestation-induced changes in rainfall decrease soybean-maize yields in Brazil," Ecological Modelling, Elsevier, vol. 486(C).
    16. Gardner, A.S. & Gaston, K.J. & Maclean, I.M.D., 2021. "Combining qualitative and quantitative methodology to assess prospects for novel crops in a warming climate," Agricultural Systems, Elsevier, vol. 190(C).
    17. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    18. McCarthy, Alison & Foley, Joseph & Raedts, Pieter & Hills, James, 2023. "Field evaluation of automated site-specific irrigation for cotton and perennial ryegrass using soil-water sensors and Model Predictive Control," Agricultural Water Management, Elsevier, vol. 277(C).
    19. Hamze, Mohamad & Cheviron, Bruno & Baghdadi, Nicolas & Lo, Madiop & Courault, Dominique & Zribi, Mehrez, 2023. "Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model," Agricultural Water Management, Elsevier, vol. 283(C).
    20. Bounajra, Afaf & Guemmat, Kamal El & Mansouri, Khalifa & Akef, Fatiha, 2024. "Towards efficient irrigation management at field scale using new technologies: A systematic literature review," Agricultural Water Management, Elsevier, vol. 295(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:595-:d:1588801. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.