Author
Abstract
This work explores an intelligent field irrigation warning system based on the Enhanced Genetic Algorithm—Backpropagation Neural Network (EGA-BPNN) model in the context of smart agriculture. To achieve this, irrigation flow prediction in agricultural fields is chosen as the research topic. Firstly, the BPNN principles are studied, revealing issues such as sensitivity to initial values, susceptibility to local optima, and sample dependency. To address these problems, a genetic algorithm (GA) is adopted for optimizing the BPNN, and the EGA-BPNN model is used to predict irrigation flow in agricultural fields. Secondly, the EGA-BPNN model can overcome the local optimization and overfitting problems of traditional BPNN through the global search ability of GA. Moreover, it is suitable for the irrigation flow prediction task with complex environmental factors in smart agriculture. Finally, comparative experiments compare the prediction accuracy of BPNN and EGA-BPNN using single and dual water level flow prediction models respectively. The results reveal that as the number of nodes in the hidden layer increases, the model’s Mean Squared Error (MSE) and Relative Error (RE) show a decreasing trend, indicating an improvement in model prediction accuracy. When the number of nodes in the hidden layer increases from 6 to 16, the MSE of the single and dual water level flow prediction models decreases from 4.53×10−4 to 3.68×10−4 and 2.38×10−4 to 1.66×10−4, respectively. Under a standalone BPNN, the absolute relative error in flow prediction is 1.09%. In contrast, the EGA-BPNN model achieves a significantly lower mean absolute relative error of 0.41% for single-flow prediction, demonstrating superior prediction performance. Furthermore, compared to the BPNN, the EGA-BPNN model exhibits a 2.11 reduction in MSE, further emphasizing the positive impact of introducing the GA on model performance. The research outcomes contribute to more accurate water resource planning and management, providing a more reliable basis for decision-making.
Suggested Citation
Xiying Wang, 2025.
"The artificial intelligence-based agricultural field irrigation warning system using GA-BP neural network under smart agriculture,"
PLOS ONE, Public Library of Science, vol. 20(1), pages 1-21, January.
Handle:
RePEc:plo:pone00:0317277
DOI: 10.1371/journal.pone.0317277
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0317277. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.