IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p179-d1561930.html
   My bibliography  Save this article

Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters

Author

Listed:
  • Paul Rilstone

    (Department of Economics, York University, Toronto, ON M3J 1P3, Canada)

Abstract

Higher-order asymptotic methods for nonlinear models with nuisance parameters are developed. We allow for both one-step estimators, in which the nuisance and parameters of interest are jointly estimated; and also two-step (or iterated) estimators, in which the nuisance parameters are first estimated. The properties of the former, although in principle simpler to conceptualize, are more difficult to establish explicitly. The iterated estimators allow for a variety of scenarios. The results indicate when second-order considerations should be taken into account when conducting inferences with two-step estimators. The results in the paper accomplish three objectives: (i) provide simpler methods for deriving higher-order moments when nuisance parameters are present; (ii) indicate more explicitly the sources of deviations of estimators’ sampling distributions from that given by standard first-order asymptotic theory; and, in turn, (iii) indicate in which situations the corrections (either analytically or by a resampling method such as bootstrap or jackknife) should be made when making inferences. We illustrate using several popular examples in econometrics. We also provide a numerical example which highlights how a simple analytical bias correction can improve inferences.

Suggested Citation

  • Paul Rilstone, 2025. "Higher-Order Expansions for Estimators in the Presence of Nuisance Parameters," Mathematics, MDPI, vol. 13(2), pages 1-39, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:179-:d:1561930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/179/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/179/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Gubhinder Kundhi & Paul Rilstone, 2020. "Simplified Matrix Methods for Multivariate Edgeworth Expansions," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 18(2), pages 293-326, June.
    3. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    4. Jinyong Hahn & Whitney Newey, 2004. "Jackknife and Analytical Bias Reduction for Nonlinear Panel Models," Econometrica, Econometric Society, vol. 72(4), pages 1295-1319, July.
    5. Yong Bao & Aman Ullah, 2009. "On skewness and kurtosis of econometric estimators," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 232-247, July.
    6. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    7. Qian Chen & David Giles, 2012. "Finite-sample properties of the maximum likelihood estimator for the binary logit model with random covariates," Statistical Papers, Springer, vol. 53(2), pages 409-426, May.
    8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    9. Rilstone, Paul & Ullah, Aman, 2005. "Corrigendum to "The second-order bias and mean squared error of nonlinear estimators": [Journal of Econometrics 75(2) (1996) 369-395]," Journal of Econometrics, Elsevier, vol. 124(1), pages 203-204, January.
    10. Paul Rilstone, 2021. "Higher-Order Stochastic Expansions and Approximate Moments for Non-linear Models with Heterogeneous Observations," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 99-120, December.
    11. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Creel, Michael & Kristensen, Dennis, 2011. "Indirect Likelihood Inference," Dynare Working Papers 8, CEPREMAP.
    2. Yong Bao & Aman Ullah, 2021. "Analytical Finite Sample Econometrics: From A. L. Nagar to Now," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 17-37, December.
    3. Patrik Guggenberger & Jinyong Hahn, 2005. "Finite Sample Properties of the Two-Step Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 247-263.
    4. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    5. Jin, Fei & Lee, Lung-fei, 2019. "GEL estimation and tests of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 208(2), pages 585-612.
    6. Li Dai & Lorraine Eden & Paul W. Beamish, 2017. "Caught in the crossfire: Dimensions of vulnerability and foreign multinationals' exit from war-afflicted countries," Strategic Management Journal, Wiley Blackwell, vol. 38(7), pages 1478-1498, July.
    7. Prosper Dovonon & Firmin Doko Tchatoka & Michael Aguessy, 2019. "Relevant moment selection under mixed identification strength," School of Economics and Public Policy Working Papers 2019-04, University of Adelaide, School of Economics and Public Policy.
    8. Kyoo il Kim, 2006. "Higher Order Bias Correcting Moment Equation for M-Estimation and its Higher Order Efficiency," Labor Economics Working Papers 22453, East Asian Bureau of Economic Research.
    9. Paul Rilstone, 2021. "Higher-Order Stochastic Expansions and Approximate Moments for Non-linear Models with Heterogeneous Observations," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 99-120, December.
    10. Jondeau, Eric & Le Bihan, Hervé, 2008. "Examining bias in estimators of linear rational expectations models under misspecification," Journal of Econometrics, Elsevier, vol. 143(2), pages 375-395, April.
    11. Wilhelm, Daniel, 2015. "Optimal Bandwidth Selection For Robust Generalized Method Of Moments Estimation," Econometric Theory, Cambridge University Press, vol. 31(5), pages 1054-1077, October.
    12. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    13. James H. Stock & Jonathan Wright, 1996. "Asymptotics for GMM Estimators with Weak Instruments," NBER Technical Working Papers 0198, National Bureau of Economic Research, Inc.
    14. Hyunseung Kang & Laura Peck & Luke Keele, 2018. "Inference for instrumental variables: a randomization inference approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1231-1254, October.
    15. Stephen Bond & Anke Hoeffler & Jonathan Temple, 2001. "GMM Estimation of Empirical Growth Models," Economics Papers 2001-W21, Economics Group, Nuffield College, University of Oxford.
    16. Balsmeier, Benjamin & Buchwald, Achim & Peters, Heiko, 2011. "Outside board memberships of CEOs: Expertise or entrenchment?," DICE Discussion Papers 26, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    17. Alexis Akira Toda & Kieran James Walsh, 2017. "Fat tails and spurious estimation of consumption‐based asset pricing models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1156-1177, September.
    18. Gubhinder Kundhi & Paul Rilstone, 2015. "Saddlepoint expansions for GEL estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 1-24, March.
    19. Fernández-Val, Iván & Vella, Francis, 2011. "Bias corrections for two-step fixed effects panel data estimators," Journal of Econometrics, Elsevier, vol. 163(2), pages 144-162, August.
    20. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:179-:d:1561930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.