IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i15p2465-d1714050.html
   My bibliography  Save this article

An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa

Author

Listed:
  • Chia-Nan Wang

    (Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

  • Duy-Oanh Tran Thi

    (Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan
    Department of Economics and Industrial Management, Cantho University of Technology, Can Tho 901163, Vietnam)

  • Nhat-Luong Nhieu

    (College of Technology and Design, University of Economics Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam)

  • Ming-Hsien Hsueh

    (Department of Industrial Engineering and Management, National Kaohsiung University of Science and Technology, Kaohsiung 807618, Taiwan)

Abstract

Agricultural development is vital for East Africa’s economic growth, yet the region faces significant disparities and systemic barriers. A critical problem exists due to the lack of an integrated quantitative framework to systematically comparing agricultural capacities and facilitate optimal resource allocation, as existing studies often overlook combined internal and external factors. This study proposes a comprehensive multi-criteria decision-making (MCDM) model to assess, categorize, and strategically profile the agricultural development capacity of 18 East African countries. The method employed is an integrated Entropy-MAIRCA model, which objectively weighs six criteria (the food production index, arable land, production fluctuation, food export/import ratios, and the political stability index) and ranks countries by their distance from an ideal development state. The experiment applied this framework to 18 East African nations using official data. The results revealed significant differences, forming four distinct strategic groups: frontier, emerging, trade-dependent, and high risk. The food export index (C4) and production volatility (C3) were identified as the most influential criteria. This model’s contribution is providing a science-based, transparent decision support tool for designing sustainable agricultural policies, aiding investment planning, and promoting regional cooperation, while emphasizing the crucial role of institutional factors.

Suggested Citation

  • Chia-Nan Wang & Duy-Oanh Tran Thi & Nhat-Luong Nhieu & Ming-Hsien Hsueh, 2025. "An Integrated Entropy–MAIRCA Approach for Multi-Dimensional Strategic Classification of Agricultural Development in East Africa," Mathematics, MDPI, vol. 13(15), pages 1-22, July.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2465-:d:1714050
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/15/2465/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/15/2465/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Appiah-Twumasi & Maxwell Anamdare Asale, 2024. "Crop diversification and farm household food and nutrition security in Northern Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(1), pages 157-185, January.
    2. Uisso, Amani Michael & Tanrıvermiş, Harun, 2021. "Driving factors and assessment of changes in the use of arable land in Tanzania," Land Use Policy, Elsevier, vol. 104(C).
    3. Babak Daneshvar Rouyendegh & Şeyda Savalan, 2022. "An Integrated Fuzzy MCDM Hybrid Methodology to Analyze Agricultural Production," Sustainability, MDPI, vol. 14(8), pages 1-16, April.
    4. Anne Margrethe Brigham, 2011. "Agricultural Exports and Food Insecurity in Sub‐Saharan Africa: A Qualititative Configurational Analysis," Development Policy Review, Overseas Development Institute, vol. 29(6), pages 729-748, November.
    5. Santeramo, Fabio Gaetano & Jelliffe, Jeremy & Hoekman, Bernard, 2024. "Agri-food value chains and the global food dollar: The role of trade and services," Food Policy, Elsevier, vol. 127(C).
    6. R. S. Ritzema & R. Frelat & S. Douxchamps & S. Silvestri & M. C. Rufino & M. Herrero & K. E. Giller & S. López-Ridaura & N. Teufel & B. K. Paul & M. T. Wijk, 2017. "Is production intensification likely to make farm households food-adequate? A simple food availability analysis across smallholder farming systems from East and West Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(1), pages 115-131, February.
    7. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    8. Leeza De Silva & Nihal Jayamaha & Elena Garnevska, 2023. "Sustainable Farmer Development for Agri-Food Supply Chains in Developing Countries," Sustainability, MDPI, vol. 15(20), pages 1-20, October.
    9. Ding-Yi Zhao & Yu-Yu Ma & Hung-Lung Lin, 2022. "Using the Entropy and TOPSIS Models to Evaluate Sustainable Development of Islands: A Case in China," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyuan Shi & Jiaqing Sun, 2023. "Prefabrication Implementation Potential Evaluation in Rural Housing Based on Entropy Weighted TOPSIS Model: A Case Study of Counties in Chongqing, China," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Busola D. Akintayo & Oluwafemi E. Ige & Olubayo M. Babatunde & Oludolapo A. Olanrewaju, 2023. "Evaluation and Prioritization of Power-Generating Systems Using a Life Cycle Assessment and a Multicriteria Decision-Making Approach," Energies, MDPI, vol. 16(18), pages 1-18, September.
    3. Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
    4. Sheng Gao & Huihui Sun & Jingyi Wang & Wei Liu, 2022. "Evaluation and Countermeasures of High-Quality Development of China’s Marine Economy Based on PSO-SVM," Sustainability, MDPI, vol. 14(17), pages 1-15, August.
    5. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Zhang, Tianyu & Dong, Peiwu & Zeng, Yongchao & Ju, Yanbing, 2022. "Analyzing the diffusion of competitive smart wearable devices: An agent-based multi-dimensional relative agreement model," Journal of Business Research, Elsevier, vol. 139(C), pages 90-105.
    7. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Yu Zhang & Siang Duan & Li Dong & Xiaoming Ding, 2025. "Spatial Sustainability of Agricultural Rural Settlements: An Analysis of Rural Spatial Patterns and Influencing Factors in Three Northeastern Provinces of China," Sustainability, MDPI, vol. 17(12), pages 1-29, June.
    9. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    10. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    11. Falconnier, Gatien N. & Descheemaeker, Katrien & Traore, Bouba & Bayoko, Arouna & Giller, Ken E., 2018. "Agricultural intensification and policy interventions: Exploring plausible futures for smallholder farmers in Southern Mali," Land Use Policy, Elsevier, vol. 70(C), pages 623-634.
    12. Muhammad Riaz & Wojciech Sałabun & Hafiz Muhammad Athar Farid & Nawazish Ali & Jarosław Wątróbski, 2020. "A Robust q-Rung Orthopair Fuzzy Information Aggregation Using Einstein Operations with Application to Sustainable Energy Planning Decision Management," Energies, MDPI, vol. 13(9), pages 1-39, May.
    13. Dorokhov, V.V. & Kuznetsov, G.V. & Vershinina, K.Yu. & Strizhak, P.A., 2021. "Relative energy efficiency indicators calculated for high-moisture waste-based fuel blends using multiple-criteria decision-making," Energy, Elsevier, vol. 234(C).
    14. Saeed Nosratabadi & Gergo Pinter & Amir Mosavi & Sandor Semperger, 2020. "Sustainable Banking; Evaluation of the European Business Models," Papers 2003.13423, arXiv.org.
    15. Jack Mathebula & Nhlanhla Mbuli, 2025. "Application of TOPSIS for Multi-Criteria Decision Analysis (MCDA) in Power Systems: A Systematic Literature Review," Energies, MDPI, vol. 18(13), pages 1-28, July.
    16. Ali, Shahid & Taweekun, Juntakan & Techato, Kuaanan & Waewsak, Jompob & Gyawali, Saroj, 2019. "GIS based site suitability assessment for wind and solar farms in Songkhla, Thailand," Renewable Energy, Elsevier, vol. 132(C), pages 1360-1372.
    17. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    18. Leanda C. Garvie & David J. Lee & Biljana Kulišić, 2024. "Towards a Bioeconomy: Supplying Forest Residues for the Australian Market," Energies, MDPI, vol. 17(2), pages 1-19, January.
    19. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    20. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:15:p:2465-:d:1714050. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.