Author
Listed:
- Xiaolong Chen
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
- Hongfeng Zhang
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
- Cora Un In Wong
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
- Zhengchun Song
(Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)
Abstract
We propose a novel framework for adaptive stochastic dynamics analysis of tourist behavior by integrating context-aware Markov models with finite mixture models (FMMs). Conventional Markov models often fail to capture abrupt changes induced by external shocks, such as event announcements or weather disruptions, leading to inaccurate predictions. The proposed method addresses this limitation by introducing virtual sensors that dynamically detect contextual anomalies and trigger regime switches in real-time. These sensors process streaming data to identify shocks, which are then used to reweight the probabilities of pre-learned behavioral regimes represented by FMMs. The system employs expectation maximization to train distinct Markov sub-models for each regime, enabling seamless transitions between them when contextual thresholds are exceeded. Furthermore, the framework leverages edge computing and probabilistic programming for efficient, low-latency implementation. The key contribution lies in the explicit modeling of contextual shocks and the dynamic adaptation of stochastic processes, which significantly improves robustness in volatile tourism scenarios. Experimental results demonstrate that the proposed approach outperforms traditional Markov models in accuracy and adaptability, particularly under rapidly changing conditions. Quantitative results show a 13.6% improvement in transition accuracy (0.742 vs. 0.653) compared to conventional context-aware Markov models, with an 89.2% true positive rate in shock detection and a median response latency of 47 min for regime switching. This work advances the state-of-the-art in tourist behavior analysis by providing a scalable, real-time solution for capturing complex, context-dependent dynamics. The integration of virtual sensors and FMMs offers a generalizable paradigm for stochastic modeling in other domains where external shocks play a critical role.
Suggested Citation
Xiaolong Chen & Hongfeng Zhang & Cora Un In Wong & Zhengchun Song, 2025.
"Context-Aware Markov Sensors and Finite Mixture Models for Adaptive Stochastic Dynamics Analysis of Tourist Behavior,"
Mathematics, MDPI, vol. 13(12), pages 1-26, June.
Handle:
RePEc:gam:jmathe:v:13:y:2025:i:12:p:2028-:d:1682915
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:2028-:d:1682915. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.