IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i12p2028-d1682915.html
   My bibliography  Save this article

Context-Aware Markov Sensors and Finite Mixture Models for Adaptive Stochastic Dynamics Analysis of Tourist Behavior

Author

Listed:
  • Xiaolong Chen

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Hongfeng Zhang

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Cora Un In Wong

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

  • Zhengchun Song

    (Faculty of Humanities and Social Sciences, Macao Polytechnic University, Macao, China)

Abstract

We propose a novel framework for adaptive stochastic dynamics analysis of tourist behavior by integrating context-aware Markov models with finite mixture models (FMMs). Conventional Markov models often fail to capture abrupt changes induced by external shocks, such as event announcements or weather disruptions, leading to inaccurate predictions. The proposed method addresses this limitation by introducing virtual sensors that dynamically detect contextual anomalies and trigger regime switches in real-time. These sensors process streaming data to identify shocks, which are then used to reweight the probabilities of pre-learned behavioral regimes represented by FMMs. The system employs expectation maximization to train distinct Markov sub-models for each regime, enabling seamless transitions between them when contextual thresholds are exceeded. Furthermore, the framework leverages edge computing and probabilistic programming for efficient, low-latency implementation. The key contribution lies in the explicit modeling of contextual shocks and the dynamic adaptation of stochastic processes, which significantly improves robustness in volatile tourism scenarios. Experimental results demonstrate that the proposed approach outperforms traditional Markov models in accuracy and adaptability, particularly under rapidly changing conditions. Quantitative results show a 13.6% improvement in transition accuracy (0.742 vs. 0.653) compared to conventional context-aware Markov models, with an 89.2% true positive rate in shock detection and a median response latency of 47 min for regime switching. This work advances the state-of-the-art in tourist behavior analysis by providing a scalable, real-time solution for capturing complex, context-dependent dynamics. The integration of virtual sensors and FMMs offers a generalizable paradigm for stochastic modeling in other domains where external shocks play a critical role.

Suggested Citation

  • Xiaolong Chen & Hongfeng Zhang & Cora Un In Wong & Zhengchun Song, 2025. "Context-Aware Markov Sensors and Finite Mixture Models for Adaptive Stochastic Dynamics Analysis of Tourist Behavior," Mathematics, MDPI, vol. 13(12), pages 1-26, June.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:2028-:d:1682915
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/12/2028/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/12/2028/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Correction to: Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 197-197, January.
    2. Jonathan Z. Zhang & Chun-Wei Chang, 2021. "Consumer dynamics: theories, methods, and emerging directions," Journal of the Academy of Marketing Science, Springer, vol. 49(1), pages 166-196, January.
    3. Paweł Więcek & Daniel Kubek, 2024. "The Impact Time Series Selected Characteristics on the Fuel Demand Forecasting Effectiveness Based on Autoregressive Models and Markov Chains," Energies, MDPI, vol. 17(16), pages 1-18, August.
    4. Yi-Chung Hu, 2017. "Predicting Foreign Tourists for the Tourism Industry Using Soft Computing-Based Grey–Markov Models," Sustainability, MDPI, vol. 9(7), pages 1-12, July.
    5. Guo, Bao & Li, Minglun & Zhou, Mengnan & Zhang, Fan & Wang, Pu, 2023. "A new anomalous travel demand prediction method combining Markov model and complex network model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 619(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shunlin Wang & Yifang Chen, 2022. "Consumption Coupons, Consumption Probability and Inventory Optimization: An Improved Minimum-Cost Maximum-Flow Approach," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
    2. Blasco-Arcas, Lorena & Lee, Hsin-Hsuan Meg & Kastanakis, Minas N. & Alcañiz, Mariano & Reyes-Menendez, Ana, 2022. "The role of consumer data in marketing: A research agenda," Journal of Business Research, Elsevier, vol. 146(C), pages 436-452.
    3. Sarah Gelper & Mitchell J. Lovett & Renana Peres, 2025. "The effect of second screening on repeat viewing: Insights from large-scale mobile diary data," Journal of the Academy of Marketing Science, Springer, vol. 53(3), pages 907-930, May.
    4. Rosa Maria Dangelico & Valerio Schiaroli & Luca Fraccascia, 2022. "Is Covid‐19 changing sustainable consumer behavior? A survey of Italian consumers," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1477-1496, December.
    5. Qu, Yingge & Kumar, V. & Zhao, Yi, 2023. "A dynamic model of the contract length and early termination: The roles of technology evolution and pricing strategy," Journal of Business Research, Elsevier, vol. 167(C).
    6. Chen, Xin & Guo, Shuojia & Xiong, Jie & Ye, Zhuxin, 2023. "Customer engagement, dependence and loyalty: An empirical study of Chinese customers in multitouch service encounters," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
    7. Stephen L. Vargo & Linda Peters & Hans Kjellberg & Kaisa Koskela-Huotari & Suvi Nenonen & Francesco Polese & Debora Sarno & Claudia Vaughan, 2023. "Emergence in marketing: an institutional and ecosystem framework," Journal of the Academy of Marketing Science, Springer, vol. 51(1), pages 2-22, January.
    8. Pei Yuan & Mingzhen Shao & Chao Ma, 2024. "Unlocking Economic Unity: The Digital Economy’s Impact on Market Segmentation in China," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(4), pages 16700-16734, December.
    9. Simoni F. Rohden & Lélis Balestrin Espartel, 2024. "Consumer reactions to technology in retail: choice uncertainty and reduced perceived control in decisions assisted by recommendation agents," Electronic Commerce Research, Springer, vol. 24(2), pages 901-923, June.
    10. Guo, Wenhao & Tian, Jin & Li, Minqiang, 2023. "Price-aware enhanced dynamic recommendation based on deep learning," Journal of Retailing and Consumer Services, Elsevier, vol. 75(C).
    11. Jonathan Luffarelli & Sebastiano A. Delre & Polina Landgraf, 2023. "How has the effect of brand personality on customer-based brand equity changed over time? Longitudinal evidence from a panel data set spanning 18 years," Journal of the Academy of Marketing Science, Springer, vol. 51(3), pages 598-616, May.
    12. Weber, Nicolas R. & Marchand, André & Kunz, Reinhard E., 2024. "Price and delay decisions for sequentially released products: The case of transactional streaming services," International Journal of Research in Marketing, Elsevier, vol. 41(4), pages 687-702.
    13. Carlos Bauer & Fine Leung & Robert W. Palmatier, 2024. "Effects of gifting on relationship performance: Strategies for avoiding suspicion and unfairness perceptions," Journal of the Academy of Marketing Science, Springer, vol. 52(6), pages 1713-1740, November.
    14. Daniel Guhl & Friederike Paetz & Udo Wagner & Michel Wedel, 2024. "Predicting and optimizing marketing performance in dynamic markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(1), pages 1-27, March.
    15. Albert Valenti & Shuba Srinivasan & Gokhan Yildirim & Koen Pauwels, 2024. "Direct mail to prospects and email to current customers? Modeling and field-testing multichannel marketing," Journal of the Academy of Marketing Science, Springer, vol. 52(3), pages 815-834, May.
    16. Черкашин, Александр & Сахаджи, Владислав & Гулиев, Руслан & Большунова, Елена, 2024. "Практические Методы Прогнозирования Сохранения Клиентской Базы (Перевод На Русский Язык) [Practical Methods for Predicting Customer Retention]," MPRA Paper 122483, University Library of Munich, Germany.
    17. Hang Jiang & Peiyi Kong & Yi-Chung Hu & Peng Jiang, 2021. "Forecasting China’s CO2 emissions by considering interaction of bilateral FDI using the improved grey multivariable Verhulst model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 225-240, January.
    18. Sun, Li & Zhao, Juanjuan & Zhang, Jun & Zhang, Fan & Ye, Kejiang & Xu, Chengzhong, 2024. "Activity-based individual travel regularity exploring with entropy-space K-means clustering using smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 636(C).
    19. Weiwei Pan & Lirong Jian & Tao Liu, 2019. "Grey system theory trends from 1991 to 2018: a bibliometric analysis and visualization," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1407-1434, December.
    20. Cherkashin, Alexander & Sakhadzhi, Vladislav & Guliev, Ruslan & Bolshunova, Elena, 2024. "Practical Methods for Predicting Customer Retention," MPRA Paper 122400, University Library of Munich, Germany.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:12:p:2028-:d:1682915. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.