IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i10p1552-d1651921.html
   My bibliography  Save this article

A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis

Author

Listed:
  • Florentin Șerban

    (Department of Applied Mathematics, Bucharest University of Economic Studies, 010374 Bucharest, Romania)

Abstract

This paper presents a robust multi-period portfolio optimization framework that integrates interval analysis, entropy-based diversification, and downside risk control. In contrast to classical models relying on precise probabilistic assumptions, our approach captures uncertainty through interval-valued parameters for asset returns, risk, and liquidity—particularly suitable for volatile markets such as cryptocurrencies. The model seeks to maximize terminal portfolio wealth over a finite investment horizon while ensuring compliance with return, risk, liquidity, and diversification constraints at each rebalancing stage. Risk is modeled using semi-absolute deviation, which better reflects investor sensitivity to downside outcomes than variance-based measures, and diversification is promoted through Shannon entropy to prevent excessive concentration. A nonlinear multi-objective formulation ensures computational tractability while preserving decision realism. To illustrate the practical applicability of the proposed framework, a simulated case study is conducted on four major cryptocurrencies—Bitcoin (BTC), Ethereum (ETH), Solana (SOL), and Binance Coin (BNB). The model evaluates three strategic profiles based on investor risk attitude: pessimistic (lower return bounds and upper risk bounds), optimistic (upper return bounds and lower risk bounds), and mixed (average values). The resulting final terminal wealth intervals are [1085.32, 1163.77] for the pessimistic strategy, [1123.89, 1245.16] for the mixed strategy, and [1167.42, 1323.55] for the optimistic strategy. These results demonstrate the model’s adaptability to different investor preferences and its empirical relevance in managing uncertainty under real-world volatility conditions.

Suggested Citation

  • Florentin Șerban, 2025. "A Multi-Period Optimization Framework for Portfolio Selection Using Interval Analysis," Mathematics, MDPI, vol. 13(10), pages 1-11, May.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1552-:d:1651921
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/10/1552/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/10/1552/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J W Chinneck & K Ramadan, 2000. "Linear programming with interval coefficients," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(2), pages 209-220, February.
    2. Liu, Yong-Jun & Zhang, Wei-Guo & Zhang, Pu, 2013. "A multi-period portfolio selection optimization model by using interval analysis," Economic Modelling, Elsevier, vol. 33(C), pages 113-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianjian Wang & Feng He & Xin Shi, 2019. "Numerical solution of a general interval quadratic programming model for portfolio selection," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-16, March.
    2. Soyster, A.L. & Murphy, F.H., 2013. "A unifying framework for duality and modeling in robust linear programs," Omega, Elsevier, vol. 41(6), pages 984-997.
    3. Zhou, Feng & Huang, Gordon H. & Chen, Guo-Xian & Guo, Huai-Cheng, 2009. "Enhanced-interval linear programming," European Journal of Operational Research, Elsevier, vol. 199(2), pages 323-333, December.
    4. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    5. Hocine, Amine & Kouaissah, Noureddine, 2020. "XOR analytic hierarchy process and its application in the renewable energy sector," Omega, Elsevier, vol. 97(C).
    6. Wu, Hsien-Chung, 2009. "The Karush-Kuhn-Tucker optimality conditions in multiobjective programming problems with interval-valued objective functions," European Journal of Operational Research, Elsevier, vol. 196(1), pages 49-60, July.
    7. Jana Novotná & Milan Hladík & Tomáš Masařík, 2020. "Duality Gap in Interval Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 184(2), pages 565-580, February.
    8. Palash Sahoo, 2024. "Solution of a single-objective based three-stage 4DTP model with information crowdsourcing under disaster relief scenario: a hybrid random type-2 fuzzy approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(10), pages 4668-4713, October.
    9. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    10. Oliveira, Carla & Antunes, Carlos Henggeler, 2011. "A multi-objective multi-sectoral economy–energy–environment model: Application to Portugal," Energy, Elsevier, vol. 36(5), pages 2856-2866.
    11. Gouveia, M.C. & Henriques, C.O. & Dias, L.C., 2023. "Eco-efficiency changes of the electricity and gas sectors across 28 European countries: A value-based data envelopment analysis productivity approach," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    12. Henriques, C.O. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, Luis Alejandro, 2020. "Getting a balance in the life satisfaction determinants of full-time and part-time European workers," Economic Analysis and Policy, Elsevier, vol. 67(C), pages 87-113.
    13. Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
    14. Carrabs, Francesco & Cerulli, Raffaele & D’Ambrosio, Ciriaco & Della Croce, Federico & Gentili, Monica, 2021. "An improved heuristic approach for the interval immune transportation problem," Omega, Elsevier, vol. 104(C).
    15. Yang, Dongfeng & Jiang, Chao & Cai, Guowei & Yang, Deyou & Liu, Xiaojun, 2020. "Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand," Applied Energy, Elsevier, vol. 277(C).
    16. Do, Duy Minh & Gao, Wei & Song, Chongmin & Tangaramvong, Sawekchai, 2014. "Dynamic analysis and reliability assessment of structures with uncertain-but-bounded parameters under stochastic process excitations," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 46-59.
    17. Carla Oliveira Henriques & Dulce Helena Coelho & Maria Elisabete Duarte Neves, 2022. "Investment planning in energy efficiency programs: a portfolio based approach," Operational Research, Springer, vol. 22(1), pages 615-649, March.
    18. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    19. Oliveira, Carla & Antunes, Carlos Henggeler, 2007. "Multiple objective linear programming models with interval coefficients - an illustrated overview," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1434-1463, September.
    20. Henriques, C.O. & Luque, M. & Marcenaro-Gutierrez, O.D. & Lopez-Agudo, L.A., 2019. "A multiobjective interval programming model to explore the trade-offs among different aspects of job satisfaction under different scenarios," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 35-46.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:10:p:1552-:d:1651921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.