IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i2p181-d1314096.html
   My bibliography  Save this article

Generalized Weighted Mahalanobis Distance Improved VIKOR Model for Rockburst Classification Evaluation

Author

Listed:
  • Jianhong Chen

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Zhe Liu

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Yakun Zhao

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Shan Yang

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

  • Zhiyong Zhou

    (School of Resources and Safety Engineering, Central South University, Changsha 410083, China)

Abstract

Rockbursts are hazardous phenomena of sudden and violent rock failure in deep underground excavations under high geostress conditions, which poses a serious threat to geotechnical engineering. The occurrence of rockbursts is influenced by a combination of factors. Therefore, it is necessary to find an efficient method to assess rockburst grades. In this paper, we propose a novel method that enhances the VIKOR method using a novel combination of weight and generalized weighted Mahalanobis distance. The combination weights of the evaluation indicators were calculated using game theory by combining subjective experience and objective data statistical characteristics. By introducing the generalized weighted Mahalanobis distance, the VIKOR method is improved to address the issues of inconsistent dimensions, different importance, and inconsistent correlation among indicators. The proposed method can deal with the complexity of the impact factors of rockburst evaluation and classify the rockburst intensity level. The results show that the accuracy of the improved VIKOR method with the distance formula is higher than that of the unimproved VIKOR method; the evaluation accuracy of the improved VIKOR method with the generalized weighted Mahalanobis distance is 91.67%, which outperforms the improved VIKOR methods with the Euclidean and Canberra distances. This assessment method can be easily implemented and does not depend on the discussion of the rockburst occurrence mechanism, making it widely applicable for engineering rockburst evaluation.

Suggested Citation

  • Jianhong Chen & Zhe Liu & Yakun Zhao & Shan Yang & Zhiyong Zhou, 2024. "Generalized Weighted Mahalanobis Distance Improved VIKOR Model for Rockburst Classification Evaluation," Mathematics, MDPI, vol. 12(2), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:181-:d:1314096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/2/181/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/2/181/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhe Liu & Jianhong Chen & Yakun Zhao & Shan Yang, 2023. "A Novel Method for Predicting Rockburst Intensity Based on an Improved Unascertained Measurement and an Improved Game Theory," Mathematics, MDPI, vol. 11(8), pages 1-18, April.
    2. Kaya, Tolga & Kahraman, Cengiz, 2010. "Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul," Energy, Elsevier, vol. 35(6), pages 2517-2527.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wabukala, Benard M. & Bergland, Olvar & Mukisa, Nicholas & Adaramola, Muyiwa S. & Watundu, Susan & Orobia, Laura A. & Rudaheranwa, Nichodemus, 2024. "Electricity security in Uganda: Measurement and policy priorities," Utilities Policy, Elsevier, vol. 91(C).
    2. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    3. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    4. Caetani, Alberto Pavlick & Ferreira, Luciano & Borenstein, Denis, 2016. "Development of an integrated decision-making method for an oil refinery restructuring in Brazil," Energy, Elsevier, vol. 111(C), pages 197-210.
    5. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    6. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    7. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    8. Aikaterini Papapostolou & Charikleia Karakosta & Kalliopi-Anastasia Kourti & Haris Doukas & John Psarras, 2019. "Supporting Europe’s Energy Policy Towards a Decarbonised Energy System: A Comparative Assessment," Sustainability, MDPI, vol. 11(15), pages 1-26, July.
    9. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    10. Read, Laura & Madani, Kaveh & Mokhtari, Soroush & Hanks, Catherine, 2017. "Stakeholder-driven multi-attribute analysis for energy project selection under uncertainty," Energy, Elsevier, vol. 119(C), pages 744-753.
    11. Pei-Hsuan Tsai & Chih-Jou Chen & Ho-Chin Yang, 2021. "Using Porter’s Diamond Model to Assess the Competitiveness of Taiwan’s Solar Photovoltaic Industry," SAGE Open, , vol. 11(1), pages 21582440209, January.
    12. Papapostolou, Aikaterini & Karakosta, Charikleia & Nikas, Alexandros & Psarras, John, 2017. "Exploring opportunities and risks for RES-E deployment under Cooperation Mechanisms between EU and Western Balkans: A multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 519-530.
    13. Koray Altintas & Ozalp Vayvay & Sinan Apak & Emine Cobanoglu, 2020. "An Extended GRA Method Integrated with Fuzzy AHP to Construct a Multidimensional Index for Ranking Overall Energy Sustainability Performances," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    14. Rudimar Caricimi & Géremi Gilson Dranka & Dalmarino Setti & Paula Ferreira, 2022. "Reframing the Selection of Hydraulic Turbines Integrating Analytical Hierarchy Process (AHP) and Fuzzy VIKOR Multi-Criteria Methods," Energies, MDPI, vol. 15(19), pages 1-26, October.
    15. Büyüközkan, Gülçin & Güleryüz, Sezin, 2016. "An integrated DEMATEL-ANP approach for renewable energy resources selection in Turkey," International Journal of Production Economics, Elsevier, vol. 182(C), pages 435-448.
    16. Athanasios Kolios & Varvara Mytilinou & Estivaliz Lozano-Minguez & Konstantinos Salonitis, 2016. "A Comparative Study of Multiple-Criteria Decision-Making Methods under Stochastic Inputs," Energies, MDPI, vol. 9(7), pages 1-21, July.
    17. Dragan Pamučar & Ibrahim Badi & Korica Sanja & Radojko Obradović, 2018. "A Novel Approach for the Selection of Power-Generation Technology Using a Linguistic Neutrosophic CODAS Method: A Case Study in Libya," Energies, MDPI, vol. 11(9), pages 1-25, September.
    18. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    19. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin & Yue, Wen Long & Zou, Xin, 2019. "Multi-criteria analysis of policies for implementing clean energy vehicles in China," Energy Policy, Elsevier, vol. 129(C), pages 826-840.
    20. Mumtaz Karatas, 2017. "Multiattribute Decision Making Using Multiperiod Probabilistic Weighted Fuzzy Axiomatic Design," Systems Engineering, John Wiley & Sons, vol. 20(4), pages 318-334, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:2:p:181-:d:1314096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.