IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i7p1570-d1105567.html
   My bibliography  Save this article

Reducing the Dimensionality of SPD Matrices with Neural Networks in BCI

Author

Listed:
  • Zhen Peng

    (School of Mathematical Science, Beihang University, Beijing 100191, China)

  • Hongyi Li

    (School of Mathematical Science, Beihang University, Beijing 100191, China)

  • Di Zhao

    (School of Mathematical Science, Beihang University, Beijing 100191, China)

  • Chengwei Pan

    (Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
    Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Ministry of Education, Beijing 100191, China)

Abstract

In brain–computer interface (BCI)-based motor imagery, the symmetric positive definite (SPD) covariance matrices of electroencephalogram (EEG) signals with discriminative information features lie on a Riemannian manifold, which is currently attracting increasing attention. Under a Riemannian manifold perspective, we propose a non-linear dimensionality reduction algorithm based on neural networks to construct a more discriminative low-dimensional SPD manifold. To this end, we design a novel non-linear shrinkage layer to modify the extreme eigenvalues of the SPD matrix properly, then combine the traditional bilinear mapping to non-linearly reduce the dimensionality of SPD matrices from manifold to manifold. Further, we build the SPD manifold network on a Siamese architecture which can learn the similarity metric from the data. Subsequently, the effective signal classification method named minimum distance to Riemannian mean (MDRM) can be implemented directly on the low-dimensional manifold. Finally, a regularization layer is proposed to perform subject-to-subject transfer by exploiting the geometric relationships of multi-subject. Numerical experiments for synthetic data and EEG signal datasets indicate the effectiveness of the proposed manifold network.

Suggested Citation

  • Zhen Peng & Hongyi Li & Di Zhao & Chengwei Pan, 2023. "Reducing the Dimensionality of SPD Matrices with Neural Networks in BCI," Mathematics, MDPI, vol. 11(7), pages 1-18, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1570-:d:1105567
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/7/1570/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/7/1570/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Branislav Popović & Marko Janev & Lidija Krstanović & Nikola Simić & Vlado Delić, 2022. "Measure of Similarity between GMMs Based on Geometry-Aware Dimensionality Reduction," Mathematics, MDPI, vol. 11(1), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ze Shi & Hongyi Li & Di Zhao & Chengwei Pan, 2023. "Research on Relation Classification Tasks Based on Cybersecurity Text," Mathematics, MDPI, vol. 11(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hannart, Alexis & Naveau, Philippe, 2014. "Estimating high dimensional covariance matrices: A new look at the Gaussian conjugate framework," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 149-162.
    2. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    3. Konno, Yoshihiko, 2009. "Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss," Journal of Multivariate Analysis, Elsevier, vol. 100(10), pages 2237-2253, November.
    4. Wessel N. Wieringen & Gwenaël G. R. Leday, 2024. "Ridge-type covariance and precision matrix estimators of the multivariate normal distribution," Statistical Papers, Springer, vol. 65(9), pages 5835-5849, December.
    5. Yuan, Ke-Hai & Chan, Wai, 2008. "Structural equation modeling with near singular covariance matrices," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4842-4858, June.
    6. Christian Bongiorno, 2020. "Bootstraps Regularize Singular Correlation Matrices," Working Papers hal-02536278, HAL.
    7. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    8. Arbia, Giuseppe & Bramante, Riccardo & Facchinetti, Silvia & Zappa, Diego, 2018. "Modeling inter-country spatial financial interactions with Graphical Lasso: An application to sovereign co-risk evaluation," Regional Science and Urban Economics, Elsevier, vol. 70(C), pages 72-79.
    9. Tae-Hwy Lee & Ekaterina Seregina, 2024. "Optimal Portfolio Using Factor Graphical Lasso," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 670-695.
    10. Ding, Hui & Zhang, Jian & Zhang, Riquan, 2022. "Nonparametric variable screening for multivariate additive models," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    11. van Wieringen, Wessel N. & Stam, Koen A. & Peeters, Carel F.W. & van de Wiel, Mark A., 2020. "Updating of the Gaussian graphical model through targeted penalized estimation," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    12. Huyen Pham & Xiaoli Wei & Chao Zhou, 2018. "Portfolio diversification and model uncertainty: a robust dynamic mean-variance approach," Papers 1809.01464, arXiv.org, revised Dec 2021.
    13. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    14. Steland, Ansgar, 2020. "Testing and estimating change-points in the covariance matrix of a high-dimensional time series," Journal of Multivariate Analysis, Elsevier, vol. 177(C).
    15. Ben R. Craig & Margherita Giuzio & Sandra Paterlini, 2019. "The Effect of Possible EU Diversification Requirements on the Risk of Banks’ Sovereign Bond Portfolios," Working Papers 19-12, Federal Reserve Bank of Cleveland.
    16. Tri-Dzung Nguyen & Roy Welsch, 2010. "Outlier detection and robust covariance estimation using mathematical programming," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 301-334, December.
    17. Yi Huang & Wei Zhu & Duan Li & Shushang Zhu & Shikun Wang, 2023. "Integrating Different Informations for Portfolio Selection," Papers 2305.17881, arXiv.org.
    18. Théophile Anquetin & Guillaume Coqueret & Bertrand Tavin & Lou Welgryn, 2022. "Scopes of carbon emissions and their impact on green portfolios," Post-Print hal-04144612, HAL.
    19. Istvan Varga-Haszonits & Fabio Caccioli & Imre Kondor, 2016. "Replica approach to mean-variance portfolio optimization," Papers 1606.08679, arXiv.org.
    20. Santos, André A.P. & Torrent, Hudson S., 2022. "Markowitz meets technical analysis: Building optimal portfolios by exploiting information in trend-following signals," Finance Research Letters, Elsevier, vol. 49(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:7:p:1570-:d:1105567. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.