IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2765-d1174145.html
   My bibliography  Save this article

Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain

Author

Listed:
  • Yiwei Wu

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China)

  • Hongyu Zhang

    (Division of Logistics and Transportation, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)

  • Shuaian Wang

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China)

  • Lu Zhen

    (School of Management, Shanghai University, Shanghai 200436, China)

Abstract

The greenhouse effect caused by carbon dioxide ( C O 2 ) emissions has forced the shipping industry to actively reduce the amount of C O 2 emissions emitted directly into the atmosphere over the past few years. Carbon capture, utilization, and storage (CCUS) is one of the main technological methods for reducing the amount of C O 2 emissions emitted directly into the atmosphere. C O 2 transport, i.e., shipping C O 2 to permanent or temporary storage sites, is a critical intermediate step in the CCUS chain. This study formulates a mixed-integer programming model for a carbon storage and transport problem in the CCUS chain to optimally determine ship allocation, ship departure scheduling, and C O 2 storage and transport. Taking advantage of the structure of the problem, we transform the mixed-integer programming model into a simpler model that can be computed efficiently. To evaluate the performance of the simpler model, numerous computational experiments are conducted. The results show that all small-scale instances (each with 10 power plants) and medium-scale instances (each with 30 power plants) can be solved optimality by Gurobi within 14.33 s. For large-scale instances with 60 and 65 power plants, feasible solutions with average gap values of 0.06% and 6.93% can be obtained by Gurobi within one hour, which indicates that the proposed methodology can be efficiently applied to practical problems. In addition, important parameters, including the unit fuel price, the time-charter cost, and the ship sailing speed, are examined in sensitivity analyses to investigate the impacts of these factors on operations decisions. In summary, a lower fuel price, a lower charter cost, or a higher ship sailing speed can increase the profit of the CCUS chain.

Suggested Citation

  • Yiwei Wu & Hongyu Zhang & Shuaian Wang & Lu Zhen, 2023. "Mathematical Optimization of Carbon Storage and Transport Problem for Carbon Capture, Use, and Storage Chain," Mathematics, MDPI, vol. 11(12), pages 1-14, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2765-:d:1174145
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2765/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2765/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaudhari, Urmila & Bhadoriya, Amrita & Jani, Mrudul Y. & Sarkar, Biswajit, 2023. "A generalized payment policy for deteriorating items when demand depends on price, stock, and advertisement under carbon tax regulations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 556-574.
    2. Liu, Baoli & Li, Zhi-Chun & Wang, Yadong, 2022. "A two-stage stochastic programming model for seaport berth and channel planning with uncertainties in ship arrival and handling times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    3. Al Baroudi, Hisham & Awoyomi, Adeola & Patchigolla, Kumar & Jonnalagadda, Kranthi & Anthony, E.J., 2021. "A review of large-scale CO2 shipping and marine emissions management for carbon capture, utilisation and storage," Applied Energy, Elsevier, vol. 287(C).
    4. Chen, Yan & Huang, Zhenhua & Ai, Hongshan & Guo, Xingkun & Luo, Fan, 2021. "The Impact of GIS/GPS Network Information Systems on the Logistics Distribution Cost of Tobacco Enterprises," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    5. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Al Hajj Hassan, Lama & Hewitt, Mike & Mahmassani, Hani S., 2022. "Daily load planning under different autonomous truck deployment scenarios," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Paul E. Hardisty & Mayuran Sivapalan & Peter Brooks, 2011. "The Environmental and Economic Sustainability of Carbon Capture and Storage," IJERPH, MDPI, vol. 8(5), pages 1-18, May.
    8. Niu, Baozhuang & Mu, Zihao & Cao, Bin & Gao, Jie, 2021. "Should multinational firms implement blockchain to provide quality verification?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    9. Vivian Scott & Stuart Gilfillan & Nils Markusson & Hannah Chalmers & R. Stuart Haszeldine, 2013. "Last chance for carbon capture and storage," Nature Climate Change, Nature, vol. 3(2), pages 105-111, February.
    10. Yalcin, Haydar & Daim, Tugrul U., 2022. "Logistics, supply chain management and technology research: An analysis on the axis of technology mining," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Rahman, Farahiyah Abdul & Aziz, Md Maniruzzaman A. & Saidur, R. & Bakar, Wan Azelee Wan Abu & Hainin, M.R & Putrajaya, Ramadhansyah & Hassan, Norhidayah Abdul, 2017. "Pollution to solution: Capture and sequestration of carbon dioxide (CO2) and its utilization as a renewable energy source for a sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 112-126.
    12. Zhang, Shuai & Liu, Linlin & Zhang, Lei & Zhuang, Yu & Du, Jian, 2018. "An optimization model for carbon capture utilization and storage supply chain: A case study in Northeastern China," Applied Energy, Elsevier, vol. 231(C), pages 194-206.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    2. Wang, H.D. & Chen, Y. & Ma, G.W., 2020. "Effects of capillary pressures on two-phase flow of immiscible carbon dioxide enhanced oil recovery in fractured media," Energy, Elsevier, vol. 190(C).
    3. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    4. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    5. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    6. Waseem Yousaf & Muhammad Sajjad Hussain & Anam Aziz, 2021. "The Role of Green Energy on Reducing the Carbon Emission in ASEAN Countries," iRASD Journal of Energy and Environment, International Research Association for Sustainable Development (iRASD), vol. 2(1), pages 34-39, June.
    7. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    8. Ghorbani, Bahram & Mehrpooya, Mehdi & Ghasemzadeh, Hossein, 2018. "Investigation of a hybrid water desalination, oxy-fuel power generation and CO2 liquefaction process," Energy, Elsevier, vol. 158(C), pages 1105-1119.
    9. Xiang, Yue & Guo, Yongtao & Wu, Gang & Liu, Junyong & Sun, Wei & Lei, Yutian & Zeng, Pingliang, 2022. "Low-carbon economic planning of integrated electricity-gas energy systems," Energy, Elsevier, vol. 249(C).
    10. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    11. Attahiru, Yusuf Babangida & Aziz, Md. Maniruzzaman A. & Kassim, Khairul Anuar & Shahid, Shamsuddin & Wan Abu Bakar, Wan Azelee & NSashruddin, Thanwa Filza & Rahman, Farahiyah Abdul & Ahamed, Mohd Imra, 2019. "A review on green economy and development of green roads and highways using carbon neutral materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 600-613.
    12. Feng Dong & Yuling Pan, 2020. "Evolution of Renewable Energy in BRI Countries: A Combined Econometric and Decomposition Approach," IJERPH, MDPI, vol. 17(22), pages 1-18, November.
    13. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "Nuclear power can reduce emissions and maintain a strong economy: Rating Australia’s optimal future electricity-generation mix by technologies and policies," Applied Energy, Elsevier, vol. 136(C), pages 712-725.
    14. Xue‐Fei Wang & Long Xiong & Li Li & Jun‐Jun Zhong, 2020. "Effect of heat treatment temperature on CO2 capture of nitrogen‐enriched porous carbon fibers," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(2), pages 461-471, April.
    15. Wang, Sijia & Jiang, Lanlan & Cheng, Zucheng & Liu, Yu & Zhao, Jiafei & Song, Yongchen, 2021. "Experimental study on the CO2-decane displacement front behavior in high permeability sand evaluated by magnetic resonance imaging," Energy, Elsevier, vol. 217(C).
    16. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    17. Zhou, Yu & Gao, Xiang & Luo, Suyuan & Xiong, Yu & Ye, Niangyue, 2022. "Anti-Counterfeiting in a retail Platform: A Game-Theoretic approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    18. Xu, Xiaoping & He, Ping & Zhou, Li & Cheng, T.C.E., 2023. "Coordination of a platform-based supply chain in the marketplace or reselling mode considering cross-channel effect and blockchain technology," European Journal of Operational Research, Elsevier, vol. 309(1), pages 170-187.
    19. Shi, Xiutian & Tang, Jianxi & Dong, Ciwei, 2022. "Should a domestic firm carve out a niche in overseas markets? Value of purchasing agents," European Journal of Operational Research, Elsevier, vol. 300(1), pages 85-94.
    20. Merkebe Getachew Demissie & Lina Kattan, 2022. "Understanding the temporal and spatial interactions between transit ridership and urban land-use patterns: an exploratory study," Public Transport, Springer, vol. 14(2), pages 385-417, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2765-:d:1174145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.