IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i9p1548-d808572.html
   My bibliography  Save this article

Research on an Accuracy Optimization Algorithm of Kriging Model Based on a Multipoint Filling Criterion

Author

Listed:
  • Shande Li

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Innovation Institute of Mobile Emergency Equipment Manufacturing, Hubei Institute of Specialty Vehicle, Suizhou 441300, China)

  • Shuai Yuan

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Shaowei Liu

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jian Wen

    (Hubei Innovation Institute of Mobile Emergency Equipment Manufacturing, Hubei Institute of Specialty Vehicle, Suizhou 441300, China)

  • Qibai Huang

    (State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
    Hubei Innovation Institute of Mobile Emergency Equipment Manufacturing, Hubei Institute of Specialty Vehicle, Suizhou 441300, China)

Abstract

The optimization method based on the surrogate model has been widely used in the simulation and calculation process of complex engineering models. However, in this process, the low accuracy and computational efficiency of the surrogate model has always been an urgent problem that needs to be solved. Aimed at this problem, combined with the two characteristics of global search and local detection, a filling criterion with multiple points is firstly proposed named maximum of expected improvement & minimizing the predicted objective function & maximum of root mean squared error (EI&MP&RMSE) in this paper. Furthermore, the optimization procedure of the surrogate model based on EI&MP&RMSE is concluded. Meanwhile, the classical one-dimensional and two-dimensional functions are applied to verify the accuracy of the proposed method. The difference in the accuracy and mean square error of the surrogate model under different infill points criteria are analyzed. As expected, it shows that this method can effectively improve the accuracy of the surrogate model and reduce the number of iterations. It has extensive practicability and serviceability for the optimization of complex engineering structures.

Suggested Citation

  • Shande Li & Shuai Yuan & Shaowei Liu & Jian Wen & Qibai Huang, 2022. "Research on an Accuracy Optimization Algorithm of Kriging Model Based on a Multipoint Filling Criterion," Mathematics, MDPI, vol. 10(9), pages 1-11, May.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1548-:d:808572
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/9/1548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/9/1548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Pham, Quang Hung & Gagnon, Martin & Antoni, Jérôme & Tahan, Antoine & Monette, Christine, 2022. "Prediction of hydroelectric turbine runner strain signal via cyclostationary decomposition and kriging interpolation," Renewable Energy, Elsevier, vol. 182(C), pages 998-1011.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    2. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    3. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    4. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.
    5. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    6. Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
    7. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    8. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    9. Swetlana Herbrandt & Uwe Ligges & Manuel Pinho Ferreira & Michael Kansteiner & Dirk Biermann & Wolfgang Tillmann & Claus Weihs, 2018. "Model based optimization of a statistical simulation model for single diamond grinding," Computational Statistics, Springer, vol. 33(3), pages 1127-1143, September.
    10. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    11. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    12. Kleijnen, Jack P.C. & Mehdad, E., 2013. "Conditional simulation for efficient global optimization," Other publications TiSEM 52e4860d-9887-4a63-b19a-7, Tilburg University, School of Economics and Management.
    13. Shengguan Xu & Hongquan Chen, 2018. "Nash game based efficient global optimization for large-scale design problems," Journal of Global Optimization, Springer, vol. 71(2), pages 361-381, June.
    14. Majed Hadid & Adel Elomri & Regina Padmanabhan & Laoucine Kerbache & Oualid Jouini & Abdelfatteh El Omri & Amir Nounou & Anas Hamad, 2022. "Clustering and Stochastic Simulation Optimization for Outpatient Chemotherapy Appointment Planning and Scheduling," IJERPH, MDPI, vol. 19(23), pages 1-34, November.
    15. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Discussion Paper 2008-95, Tilburg University, Center for Economic Research.
    16. Dawei Zhan & Jintao Wu & Huanlai Xing & Tianrui Li, 2024. "A cooperative approach to efficient global optimization," Journal of Global Optimization, Springer, vol. 88(2), pages 327-357, February.
    17. Mickaël Binois & David Ginsbourger & Olivier Roustant, 2020. "On the choice of the low-dimensional domain for global optimization via random embeddings," Journal of Global Optimization, Springer, vol. 76(1), pages 69-90, January.
    18. Nestor Queipo & Salvador Pintos & Efrain Nava, 2013. "Setting targets for surrogate-based optimization," Journal of Global Optimization, Springer, vol. 55(4), pages 857-875, April.
    19. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
    20. Julien Marzat & Eric Walter & Hélène Piet-Lahanier, 2013. "Worst-case global optimization of black-box functions through Kriging and relaxation," Journal of Global Optimization, Springer, vol. 55(4), pages 707-727, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:9:p:1548-:d:808572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.