IDEAS home Printed from
   My bibliography  Save this article

Optimal learning for sequential sampling with non-parametric beliefs


  • Emre Barut


  • Warren Powell



We propose a sequential learning policy for ranking and selection problems, where we use a non-parametric procedure for estimating the value of a policy. Our estimation approach aggregates over a set of kernel functions in order to achieve a more consistent estimator. Each element in the kernel estimation set uses a different bandwidth to achieve better aggregation. The final estimate uses a weighting scheme with the inverse mean square errors of the kernel estimators as weights. This weighting scheme is shown to be optimal under independent kernel estimators. For choosing the measurement, we employ the knowledge gradient policy that relies on predictive distributions to calculate the optimal sampling point. Our method allows a setting where the beliefs are expected to be correlated but the correlation structure is unknown beforehand. Moreover, the proposed policy is shown to be asymptotically optimal. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Emre Barut & Warren Powell, 2014. "Optimal learning for sequential sampling with non-parametric beliefs," Journal of Global Optimization, Springer, vol. 58(3), pages 517-543, March.
  • Handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:517-543
    DOI: 10.1007/s10898-013-0050-5

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    3. Naveed Chehrazi & Thomas A. Weber, 2010. "Monotone Approximation of Decision Problems," Operations Research, INFORMS, vol. 58(4-part-2), pages 1158-1177, August.
    4. Härdle,Wolfgang, 1992. "Applied Nonparametric Regression," Cambridge Books, Cambridge University Press, number 9780521429504, August.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:517-543. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.