IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1500-1519.html
   My bibliography  Save this article

Ranking and Selection with Covariates for Personalized Decision Making

Author

Listed:
  • Haihui Shen

    (Sino-US Global Logistics Institute, Antai College of Economics and Management, Shanghai Jiao Tong University, Shanghai 200030, China)

  • L. Jeff Hong

    (School of Management and School of Data Science, Fudan University, Shanghai 200433, China)

  • Xiaowei Zhang

    (HKU Business School, The University of Hong Kong, Pokfulam Road, Hong Kong SAR)

Abstract

We consider a problem of ranking and selection via simulation in the context of personalized decision making, in which the best alternative is not universal, but varies as a function of some observable covariates. The goal of ranking and selection with covariates (R&S-C) is to use simulation samples to obtain a selection policy that specifies the best alternative with a certain statistical guarantee for subsequent individuals upon observing their covariates. A linear model is proposed to capture the relationship between the mean performance of an alternative and the covariates. Under the indifference-zone formulation, we develop two-stage procedures for both homoscedastic and heteroscedastic simulation errors, respectively, and prove their statistical validity in terms of average probability of correct selection. We also generalize the well-known slippage configuration and prove that the generalized slippage configuration is the least favorable configuration for our procedures. Extensive numerical experiments are conducted to investigate the performance of the proposed procedures, the experimental design issue, and the robustness to the linearity assumption. Finally, we demonstrate the usefulness of R&S-C via a case study of selecting the best treatment regimen in the prevention of esophageal cancer. We find that by leveraging disease-related personal information, R&S-C can substantially improve patients’ expected quality-adjusted life years by providing a patient-specific treatment regimen.

Suggested Citation

  • Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1500-1519
    DOI: 10.1287/ijoc.2020.1009
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1009
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    2. Chun-Hung Chen & Stephen E. Chick & Loo Hay Lee & Nugroho A. Pujowidianto, 2015. "Ranking and Selection: Efficient Simulation Budget Allocation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 45-80, Springer.
    3. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    4. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    5. Neeraj Arora & Xavier Dreze & Anindya Ghose & James Hess & Raghuram Iyengar & Bing Jing & Yogesh Joshi & V. Kumar & Nicholas Lurie & Scott Neslin & S. Sajeesh & Meng Su & Niladri Syam & Jacquelyn Thom, 2008. "Putting one-to-one marketing to work: Personalization, customization, and choice," Marketing Letters, Springer, vol. 19(3), pages 305-321, December.
    6. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
    7. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    8. Stephen E. Chick & Peter Frazier, 2012. "Sequential Sampling with Economics of Selection Procedures," Management Science, INFORMS, vol. 58(3), pages 550-569, March.
    9. L. Jeff Hong, 2006. "Fully sequential indifference‐zone selection procedures with variance‐dependent sampling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 464-476, August.
    10. Paat Rusmevichientong & John N. Tsitsiklis, 2010. "Linearly Parameterized Bandits," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 395-411, May.
    11. Diana M. Negoescu & Peter I. Frazier & Warren B. Powell, 2011. "The Knowledge-Gradient Algorithm for Sequencing Experiments in Drug Discovery," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 346-363, August.
    12. Peter I. Frazier, 2014. "A Fully Sequential Elimination Procedure for Indifference-Zone Ranking and Selection with Tight Bounds on Probability of Correct Selection," Operations Research, INFORMS, vol. 62(4), pages 926-942, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    2. Tino Werner, 2022. "Elicitability of Instance and Object Ranking," Decision Analysis, INFORMS, vol. 19(2), pages 123-140, June.
    3. Cheng Li & Siyang Gao & Jianzhong Du, 2023. "Convergence Analysis of Stochastic Kriging-Assisted Simulation with Random Covariates," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 386-402, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    2. Weiwei Fan & L. Jeff Hong & Barry L. Nelson, 2016. "Indifference-Zone-Free Selection of the Best," Operations Research, INFORMS, vol. 64(6), pages 1499-1514, December.
    3. Weiwei Fan & L. Jeff Hong & Xiaowei Zhang, 2020. "Distributionally Robust Selection of the Best," Management Science, INFORMS, vol. 66(1), pages 190-208, January.
    4. Ying Zhong & Shaoxuan Liu & Jun Luo & L. Jeff Hong, 2022. "Speeding Up Paulson’s Procedure for Large-Scale Problems Using Parallel Computing," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 586-606, January.
    5. L. Jeff Hong & Guangxin Jiang & Ying Zhong, 2022. "Solving Large-Scale Fixed-Budget Ranking and Selection Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2930-2949, November.
    6. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    7. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    8. Demet Batur & F. Fred Choobineh, 2021. "Selecting the Best Alternative Based on Its Quantile," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 657-671, May.
    9. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org.
    10. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    11. David J. Eckman & Shane G. Henderson, 2022. "Posterior-Based Stopping Rules for Bayesian Ranking-and-Selection Procedures," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1711-1728, May.
    12. Jun Luo & L. Jeff Hong & Barry L. Nelson & Yang Wu, 2015. "Fully Sequential Procedures for Large-Scale Ranking-and-Selection Problems in Parallel Computing Environments," Operations Research, INFORMS, vol. 63(5), pages 1177-1194, October.
    13. Shing Chih Tsai & Jun Luo & Chi Ching Sung, 2017. "Combined variance reduction techniques in fully sequential selection procedures," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(6), pages 502-527, September.
    14. Cheng, Zhenxia & Luo, Jun & Wu, Ruijing, 2023. "On the finite-sample statistical validity of adaptive fully sequential procedures," European Journal of Operational Research, Elsevier, vol. 307(1), pages 266-278.
    15. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    16. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    17. Victor F. Araman & René A. Caldentey, 2022. "Diffusion Approximations for a Class of Sequential Experimentation Problems," Management Science, INFORMS, vol. 68(8), pages 5958-5979, August.
    18. Taylor, Simon J.E., 2019. "Distributed simulation: state-of-the-art and potential for operational research," European Journal of Operational Research, Elsevier, vol. 273(1), pages 1-19.
    19. Huashuai Qu & Ilya O. Ryzhov & Michael C. Fu & Eric Bergerson & Megan Kurka & Ludek Kopacek, 2020. "Learning Demand Curves in B2B Pricing: A New Framework and Case Study," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1287-1306, May.
    20. Stephen Chick & Martin Forster & Paolo Pertile, 2017. "A Bayesian decision theoretic model of sequential experimentation with delayed response," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1439-1462, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1500-1519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.