IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v58y2012i3p550-569.html
   My bibliography  Save this article

Sequential Sampling with Economics of Selection Procedures

Author

Listed:
  • Stephen E. Chick

    (Technology and Operations Management Area, INSEAD, 77305 Fontainebleau, France)

  • Peter Frazier

    (Department of Operations Research and Information Engineering, Cornell University, Ithaca, New York 14853)

Abstract

Sequential sampling problems arise in stochastic simulation and many other applications. Sampling is used to infer the unknown performance of several alternatives before one alternative is selected as best. This paper presents new economically motivated fully sequential sampling procedures to solve such problems, called economics of selection procedures. The optimal procedure is derived for comparing a known standard with one alternative whose unknown reward is inferred with sampling. That result motivates heuristics when multiple alternatives have unknown rewards. The resulting procedures are more effective in numerical experiments than any previously proposed procedure of which we are aware and are easily implemented. The key driver of the improvement is the use of dynamic programming to model sequential sampling as an option to learn before selecting an alternative. It accounts for the expected benefit of adaptive stopping policies for sampling, rather than of one-stage policies, as is common in the literature. This paper was accepted by Assaf Zeevi, stochastic models and simulation.

Suggested Citation

  • Stephen E. Chick & Peter Frazier, 2012. "Sequential Sampling with Economics of Selection Procedures," Management Science, INFORMS, vol. 58(3), pages 550-569, March.
  • Handle: RePEc:inm:ormnsc:v:58:y:2012:i:3:p:550-569
    DOI: 10.1287/mnsc.1110.1425
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1110.1425
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1110.1425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    2. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    3. Brezzi, Monica & Lai, Tze Leung, 2002. "Optimal learning and experimentation in bandit problems," Journal of Economic Dynamics and Control, Elsevier, vol. 27(1), pages 87-108, November.
    4. Peter I. Frazier & Warren B. Powell, 2010. "Paradoxes in Learning and the Marginal Value of Information," Decision Analysis, INFORMS, vol. 7(4), pages 378-403, December.
    5. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric M. Schwartz & Eric T. Bradlow & Peter S. Fader, 2017. "Customer Acquisition via Display Advertising Using Multi-Armed Bandit Experiments," Marketing Science, INFORMS, vol. 36(4), pages 500-522, July.
    2. Stephen Chick & Martin Forster & Paolo Pertile, 2017. "A Bayesian decision theoretic model of sequential experimentation with delayed response," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1439-1462, November.
    3. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu, 2016. "Dynamic Sampling Allocation and Design Selection," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 195-208, May.
    4. Jing Xie & Peter I. Frazier, 2013. "Sequential Bayes-Optimal Policies for Multiple Comparisons with a Known Standard," Operations Research, INFORMS, vol. 61(5), pages 1174-1189, October.
    5. Daniel Russo, 2020. "Simple Bayesian Algorithms for Best-Arm Identification," Operations Research, INFORMS, vol. 68(6), pages 1625-1647, November.
    6. Peter I. Frazier & Warren B. Powell, 2010. "Paradoxes in Learning and the Marginal Value of Information," Decision Analysis, INFORMS, vol. 7(4), pages 378-403, December.
    7. Powell, Warren B., 2019. "A unified framework for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 275(3), pages 795-821.
    8. Ilya O. Ryzhov & Warren B. Powell & Peter I. Frazier, 2012. "The Knowledge Gradient Algorithm for a General Class of Online Learning Problems," Operations Research, INFORMS, vol. 60(1), pages 180-195, February.
    9. Ilya O. Ryzhov, 2016. "On the Convergence Rates of Expected Improvement Methods," Operations Research, INFORMS, vol. 64(6), pages 1515-1528, December.
    10. Raluca M. Ursu & Qingliang Wang & Pradeep K. Chintagunta, 2020. "Search Duration," Marketing Science, INFORMS, vol. 39(5), pages 849-871, September.
    11. Victor F. Araman & René A. Caldentey, 2022. "Diffusion Approximations for a Class of Sequential Experimentation Problems," Management Science, INFORMS, vol. 68(8), pages 5958-5979, August.
    12. Groves, Matthew & Branke, Juergen, 2019. "Top-κ selection with pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 274(2), pages 615-626.
    13. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    14. Zhongshun Shi & Yijie Peng & Leyuan Shi & Chun-Hung Chen & Michael C. Fu, 2022. "Dynamic Sampling Allocation Under Finite Simulation Budget for Feasibility Determination," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 557-568, January.
    15. Ilya O. Ryzhov & Warren B. Powell, 2011. "Information Collection on a Graph," Operations Research, INFORMS, vol. 59(1), pages 188-201, February.
    16. Stephen E. Chick & Jürgen Branke & Christian Schmidt, 2010. "Sequential Sampling to Myopically Maximize the Expected Value of Information," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 71-80, February.
    17. Chao Qin & Daniel Russo, 2024. "Optimizing Adaptive Experiments: A Unified Approach to Regret Minimization and Best-Arm Identification," Papers 2402.10592, arXiv.org, revised Jul 2024.
    18. Stephen E. Chick & Noah Gans, 2009. "Economic Analysis of Simulation Selection Problems," Management Science, INFORMS, vol. 55(3), pages 421-437, March.
    19. Haihui Shen & L. Jeff Hong & Xiaowei Zhang, 2021. "Ranking and Selection with Covariates for Personalized Decision Making," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1500-1519, October.
    20. Juergen Branke & Wen Zhang, 2019. "Identifying efficient solutions via simulation: myopic multi-objective budget allocation for the bi-objective case," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 831-865, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:58:y:2012:i:3:p:550-569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.