IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v30y2018i4p677-693.html
   My bibliography  Save this article

Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization

Author

Listed:
  • Qi Fan

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, New York 11794)

  • Jiaqiao Hu

    (Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, New York 11794)

Abstract

We propose an adaptive search algorithm for solving simulation optimization problems with Lipschitz continuous objective functions. The method combines the strength of several popular strategies in simulation optimization. It employs the shrinking ball method to estimate the performance of sampled solutions and uses the performance estimates to fit a surrogate model that iteratively approximates the response surface of the objective function. The search for improved solutions at each iteration is then based on sampling from a promising region (a subset of the decision space) adaptively constructed to contain the point that optimizes the surrogate model. Under appropriate conditions, we show that the algorithm converges to the set of local optimal solutions with probability one. A computational study is also carried out to illustrate the algorithm and to compare its performance with some of the existing procedures.

Suggested Citation

  • Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
  • Handle: RePEc:inm:orijoc:v:30:y:2018:i:4:p:677-693
    DOI: 10.1287/ijoc.2017.0801
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0801
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    2. Robert L. Smith, 1984. "Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions," Operations Research, INFORMS, vol. 32(6), pages 1296-1308, December.
    3. Sujin Kim & Raghu Pasupathy & Shane G. Henderson, 2015. "A Guide to Sample Average Approximation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 207-243, Springer.
    4. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    5. Jiaqiao Hu, 2015. "Model-Based Stochastic Search Methods," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 319-340, Springer.
    6. Stephen M. Robinson, 1996. "Analysis of Sample-Path Optimization," Mathematics of Operations Research, INFORMS, vol. 21(3), pages 513-528, August.
    7. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    8. Zelda B. Zabinsky, 2015. "Stochastic Adaptive Search Methods: Theory and Implementation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 293-318, Springer.
    9. Jeffrey Larson & Stephen C. Billups, 2016. "Stochastic derivative-free optimization using a trust region framework," Computational Optimization and Applications, Springer, vol. 64(3), pages 619-645, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Larsen & Sébastien Lachapelle & Yoshua Bengio & Emma Frejinger & Simon Lacoste-Julien & Andrea Lodi, 2022. "Predicting Tactical Solutions to Operational Planning Problems Under Imperfect Information," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 227-242, January.
    2. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    3. Liujia Hu & Sigrún Andradóttir, 2019. "An Asymptotically Optimal Set Approach for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 21-39, February.
    4. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    5. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    6. Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
    7. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    8. Pedrielli, Giulia & Wang, Songhao & Ng, Szu Hui, 2020. "An extended Two-Stage Sequential Optimization approach: Properties and performance," European Journal of Operational Research, Elsevier, vol. 287(3), pages 929-945.
    9. Kyle Cooper & Susan R. Hunter & Kalyani Nagaraj, 2020. "Biobjective Simulation Optimization on Integer Lattices Using the Epsilon-Constraint Method in a Retrospective Approximation Framework," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1080-1100, October.
    10. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    11. Qi Zhang & Jiaqiao Hu, 2019. "Simulation Optimization Using Multi-Time-Scale Adaptive Random Search," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-34, December.
    12. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    13. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    14. Luca Anzilli & Silvio Giove, 2020. "Multi-criteria and medical diagnosis for application to health insurance systems: a general approach through non-additive measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 559-582, December.
    15. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    16. Yongchao Liu & Huifu Xu & Jane J. Ye, 2011. "Penalized Sample Average Approximation Methods for Stochastic Mathematical Programs with Complementarity Constraints," Mathematics of Operations Research, INFORMS, vol. 36(4), pages 670-694, November.
    17. Stephen Baumert & Archis Ghate & Seksan Kiatsupaibul & Yanfang Shen & Robert L. Smith & Zelda B. Zabinsky, 2009. "Discrete Hit-and-Run for Sampling Points from Arbitrary Distributions Over Subsets of Integer Hyperrectangles," Operations Research, INFORMS, vol. 57(3), pages 727-739, June.
    18. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    19. Chang, Kuo-Hao & Kuo, Po-Yi, 2018. "An efficient simulation optimization method for the generalized redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1094-1101.
    20. David Bergman & Carlos Cardonha & Jason Imbrogno & Leonardo Lozano, 2023. "Optimizing the Expected Maximum of Two Linear Functions Defined on a Multivariate Gaussian Distribution," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 304-317, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:30:y:2018:i:4:p:677-693. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.