IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i14p2402-d858749.html
   My bibliography  Save this article

An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation

Author

Listed:
  • Jiecheng Wang

    (Department of Statistics, School of Economics, Anhui University, Hefei 230039, China)

  • Yantong Liu

    (School of Management, North China University of Science and Technology, Tangshan 063210, China)

  • Jincai Chang

    (School of Science, North China University of Science and Technology, Tangshan 063210, China)

Abstract

There are three main problems for classical kernel density estimation in its application: boundary problem, over-smoothing problem of high (low)-density region and low-efficiency problem of large samples. A new improved model of multivariate adaptive binned quasi-interpolation density estimation based on a quadtree algorithm and quasi-interpolation is proposed, which can avoid the deficiency in the classical kernel density estimation model and improve the precision of the model. The model is constructed in three steps. Firstly, the binned threshold is set from the three dimensions of sample number, width of bins and kurtosis, and the bounded domain is adaptively partitioned into several non-intersecting bins (intervals) by using the iteration idea from the quadtree algorithm. Then, based on the good properties of the quasi-interpolation, the kernel functions of the density estimation model are constructed by introducing the theory of quasi-interpolation. Finally, the binned coefficients of the density estimation model are constructed by using the idea of frequency replacing probability. Simulation of the Monte Carlo method shows that the proposed non-parametric model can effectively solve the three shortcomings of the classical kernel density estimation model and significantly improve the prediction accuracy and calculation efficiency of the density function for large samples.

Suggested Citation

  • Jiecheng Wang & Yantong Liu & Jincai Chang, 2022. "An Improved Model for Kernel Density Estimation Based on Quadtree and Quasi-Interpolation," Mathematics, MDPI, vol. 10(14), pages 1-15, July.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2402-:d:858749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/14/2402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/14/2402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    2. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    3. Shunpu Zhang & Rohana Karunamuni, 2010. "Boundary performance of the beta kernel estimators," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(1), pages 81-104.
    4. K. F. Cheng & C. K. Chu & Dennis K. J. Lin, 2006. "Quick multivariate kernel density estimation for massive data sets," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 22(5‐6), pages 533-546, September.
    5. Hall, Peter & Wand, M. P., 1996. "On the Accuracy of Binned Kernel Density Estimators," Journal of Multivariate Analysis, Elsevier, vol. 56(2), pages 165-184, February.
    6. Weiran Lin & Qiuqin He, 2021. "The Influence of Potential Infection on the Relationship between Temperature and Confirmed Cases of COVID-19 in China," Sustainability, MDPI, vol. 13(15), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jenny Farmer & Eve Allen & Donald J. Jacobs, 2022. "Quasar Identification Using Multivariate Probability Density Estimated from Nonparametric Conditional Probabilities," Mathematics, MDPI, vol. 11(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Zhang, Shunpu, 2010. "A note on the performance of the gamma kernel estimators at the boundary," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 548-557, April.
    3. Gao, Wenwu & Wang, Jiecheng & Zhang, Ran, 2023. "Quasi-interpolation for multivariate density estimation on bounded domain," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 592-608.
    4. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    5. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    6. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    7. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    8. Gery Geenens, 2014. "Probit Transformation for Kernel Density Estimation on the Unit Interval," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 346-358, March.
    9. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    10. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    11. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    12. Chen, Rongda & Zhou, Hanxian & Jin, Chenglu & Zheng, Wei, 2019. "Modeling of recovery rate for a given default by non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    13. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    14. Sobom M. Somé & Célestin C. Kokonendji & Smail Adjabi & Naushad A. Mamode Khan & Said Beddek, 2024. "Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths," Computational Statistics, Springer, vol. 39(2), pages 905-937, April.
    15. Bauwens, Luc & Giot, Pierre & Grammig, Joachim & Veredas, David, 2004. "A comparison of financial duration models via density forecasts," International Journal of Forecasting, Elsevier, vol. 20(4), pages 589-609.
    16. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    17. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    18. Luca Bagnato & Antonio Punzo, 2013. "Finite mixtures of unimodal beta and gamma densities and the $$k$$ -bumps algorithm," Computational Statistics, Springer, vol. 28(4), pages 1571-1597, August.
    19. Hirukawa, Masayuki & Sakudo, Mari, 2014. "Nonnegative bias reduction methods for density estimation using asymmetric kernels," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 112-123.
    20. Renault, Olivier & Scaillet, Olivier, 2004. "On the way to recovery: A nonparametric bias free estimation of recovery rate densities," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:14:p:2402-:d:858749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.