IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i7p1480-d1703444.html

Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models

Author

Listed:
  • ByeongJun Jung

    (Department of Forest Sciences and Landscape Architecture, Wonkwang University, Iksan 54538, Republic of Korea)

  • JuYeong Youn

    (Department of Forest Sciences and Landscape Architecture, Wonkwang University, Iksan 54538, Republic of Korea)

  • SangWook Kim

    (Department of Forest Sciences and Landscape Architecture, Wonkwang University, Iksan 54538, Republic of Korea)

Abstract

This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM) . Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana . Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana . This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana , whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies.

Suggested Citation

  • ByeongJun Jung & JuYeong Youn & SangWook Kim, 2025. "Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models," Land, MDPI, vol. 14(7), pages 1-19, July.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1480-:d:1703444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/7/1480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/7/1480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tae-Su Kim & Kwanik Kwon & Gab-Sue Jang, 2021. "Variations in the Distribution and Genetic Relationships among Luciola unmunsana Populations in South Korea," Land, MDPI, vol. 10(7), pages 1-18, July.
    2. Rajendra K. Meena & Maneesh S. Bhandari & Pawan Kumar Thakur & Nitika Negi & Shailesh Pandey & Rama Kant & Rajesh Sharma & Netrananda Sahu & Ram Avtar, 2024. "MaxEnt-Based Potential Distribution Mapping and Range Shift under Future Climatic Scenarios for an Alpine Bamboo Thamnocalamus spathiflorus in Northwestern Himalayas," Land, MDPI, vol. 13(7), pages 1-18, June.
    3. Zhao, Xiaohu & Huang, Guohe & Lu, Chen & Zhou, Xiong & Li, Yongping, 2020. "Impacts of climate change on photovoltaic energy potential: A case study of China," Applied Energy, Elsevier, vol. 280(C).
    4. David W Redding & Tim C D Lucas & Tim M Blackburn & Kate E Jones, 2017. "Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data," PLOS ONE, Public Library of Science, vol. 12(11), pages 1-13, November.
    5. Shcheglovitova, Mariya & Anderson, Robert P., 2013. "Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes," Ecological Modelling, Elsevier, vol. 269(C), pages 9-17.
    6. Qianhong Quan & Yijin Wu, 2024. "Integrating Entropy Weight and MaxEnt Models for Ecotourism Suitability Assessment in Northeast China Tiger and Leopard National Park," Land, MDPI, vol. 13(8), pages 1-25, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapica, Jacek & Jurasz, Jakub & Canales, Fausto A. & Bloomfield, Hannah & Guezgouz, Mohammed & De Felice, Matteo & Zbigniew, Kobus, 2024. "The potential impact of climate change on European renewable energy droughts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    2. Cheng, Qian & Liu, Pan & Xia, Qian & Cheng, Lei & Ming, Bo & Zhang, Wei & Xu, Weifeng & Zheng, Yalian & Han, Dongyang & Xia, Jun, 2023. "An analytical method to evaluate curtailment of hydro–photovoltaic hybrid energy systems and its implication under climate change," Energy, Elsevier, vol. 278(C).
    3. Amaro, George & Fidelis, Elisangela Gomes & da Silva, Ricardo Siqueira & Marchioro, Cesar Augusto, 2023. "Effect of study area extent on the potential distribution of Species: A case study with models for Raoiella indica Hirst (Acari: Tenuipalpidae)," Ecological Modelling, Elsevier, vol. 483(C).
    4. van Steenderen, Clarke J.M. & Sutton, Guy F., 2024. "Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates," Ecological Modelling, Elsevier, vol. 498(C).
    5. Lv, Furong & Tang, Haiping, 2025. "Assessing the impact of climate change on the optimal solar–wind hybrid power generation potential in China: A focus on stability and complementarity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
    6. Valentina Lucia Astrid Laface & Carmelo Maria Musarella & Gianmarco Tavilla & Agostino Sorgonà & Ana Cano-Ortiz & Ricardo Quinto Canas & Giovanni Spampinato, 2023. "Current and Potential Future Distribution of Endemic Salvia ceratophylloides Ard. (Lamiaceae)," Land, MDPI, vol. 12(1), pages 1-21, January.
    7. Zhang, Xiangyu & Glaws, Andrew & Cortiella, Alexandre & Emami, Patrick & King, Ryan N., 2025. "Deep generative models in energy system applications: Review, challenges, and future directions," Applied Energy, Elsevier, vol. 380(C).
    8. H. Oğuz Çoban & Ömer K. Örücü & E. Seda Arslan, 2020. "MaxEnt Modeling for Predicting the Current and Future Potential Geographical Distribution of Quercus libani Olivier," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    9. Ping, Dazhou & Li, Chaosu & Yu, Xiaojun & Liu, Zhengxuan & Tu, Ran & Zhou, Yuekuan, 2025. "City-scale information modelling for urban energy resilience with optimal battery energy storages in Hong Kong," Applied Energy, Elsevier, vol. 378(PA).
    10. Bruce G. Marcot & Anca M. Hanea, 2021. "What is an optimal value of k in k-fold cross-validation in discrete Bayesian network analysis?," Computational Statistics, Springer, vol. 36(3), pages 2009-2031, September.
    11. Yan, Jie & Han, Xue & Wang, Han & Ge, Chang & Liu, Yongqian, 2025. "An AI-based weather prediction method for wind farms combining global forecast field and wind speed temporal transfer characteristics," Energy, Elsevier, vol. 329(C).
    12. Holder, Anna M. & Markarian, Arev & Doyle, Jessie M. & Olson, John R., 2020. "Predicting geographic distributions of fishes in remote stream networks using maximum entropy modeling and landscape characterizations," Ecological Modelling, Elsevier, vol. 433(C).
    13. Zeng, Yiwen & Low, Bi Wei & Yeo, Darren C.J., 2016. "Novel methods to select environmental variables in MaxEnt: A case study using invasive crayfish," Ecological Modelling, Elsevier, vol. 341(C), pages 5-13.
    14. Makasis, Nikolas & Gu, Xiaoying & Kreitmair, Monika J. & Narsilio, Guillermo A. & Choudhary, Ruchi, 2023. "Geothermal pavements: A city-scale investigation on providing sustainable heating for the city of Cardiff, UK," Renewable Energy, Elsevier, vol. 218(C).
    15. Boyang Liu & Xiang Gao & Jun Ma & Zhihui Jiao & Jianhua Xiao & Hongbin Wang, 2018. "Influence of Host and Environmental Factors on the Distribution of the Japanese Encephalitis Vector Culex tritaeniorhynchus in China," IJERPH, MDPI, vol. 15(9), pages 1-15, August.
    16. Collet, L. & Gailhard, J. & Guénand, Y. & Monteil, C. & Oueslati, B. & Peton, P.-Y. & Martinet, C. & Bono, C., 2025. "Future nuclear power outages in a changing climate - A case study on two contrasted French power plants," Energy, Elsevier, vol. 320(C).
    17. Moreno-Amat, Elena & Mateo, Rubén G. & Nieto-Lugilde, Diego & Morueta-Holme, Naia & Svenning, Jens-Christian & García-Amorena, Ignacio, 2015. "Impact of model complexity on cross-temporal transferability in Maxent species distribution models: An assessment using paleobotanical data," Ecological Modelling, Elsevier, vol. 312(C), pages 308-317.
    18. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).
    19. Lan, Xinyao & Jin, Jiahui & Xu, Beibei & Chen, Diyi & Egusquiza, Mònica & Kim, Jin-Hyuk & Egusquiza, Eduard & Jafar, Nejadali & Xu, Lin & Kuang, Yuan, 2022. "Physical model test and parametric optimization of a hydroelectric generating system with a coaxial shaft surge tank," Renewable Energy, Elsevier, vol. 200(C), pages 880-899.
    20. Aldo Rafael Martínez-Sifuentes & José Antonio Hernández-Herrera & Luis Manuel Valenzuela-Núñez & Edwin Amir Briceño-Contreras & Ulises Manzanilla-Quiñones & Argel Gastélum-Arellánez & Ramón Trucíos-Ca, 2022. "Climate Change Impact on the Habitat Suitability of Pseudotsuga menziesii Mirb. Franco in Mexico: An Approach for Its Conservation," Sustainability, MDPI, vol. 14(14), pages 1-17, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:7:p:1480-:d:1703444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.