IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p625-d1089096.html
   My bibliography  Save this article

Post-Flood Resilience Assessment of July 2021 Flood in Western Germany and Henan, China

Author

Listed:
  • Bikram Manandhar

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Institute of Forestry, Tribhuvan University, Hetauda 44107, Nepal)

  • Shenghui Cui

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Lihong Wang

    (Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China)

  • Sabita Shrestha

    (Youth Innovation Lab, Banshidhar Marg, Kathmandu 44600, Nepal)

Abstract

In July 2021, devastating floods occurred in western Germany and Henan, China, resulting in extreme loss of life and property damage. Despite the differences in context, climate change contributed to these events. Flood resilience generally means the system’s ability to recover from floods. A post-flood resilience assessment seeks to determine the impact of the flood on the area, the duration it took to recover, the effectiveness of the measures taken to reduce the risk of flooding, and ways to enhance flood resilience. The post-flood review capacity method was used to assess the event and calculate the flood resilience index. Western Germany experienced a 500-year return period flood in connection with the low-pressure system, Bernd, while Zhengzhou in Henan experienced a 1000-year return period flood with the influence of Typhoon In-Fa and the Western Pacific subtropical high. More than 107,000 people were affected in Germany, with 205 deaths that account for USD 40 billion in economic losses, whereas in Henan, 14.786 million people were affected, and 398 people died, which accounts for USD 18.9 billion in losses. Germany was more impacted and took longer to restore essential services than Henan, China. The flood resilience index shows that the resilience level of both countries is low. The severe rainstorms in Zhengzhou and the Ahr River Valley exposed weaknesses in urban disaster management, particularly in urban areas, such as subway flooding and risk communication with the public. The events highlighted the need to better understand risks and their consequences, early warning systems, preparedness, and emergency response.

Suggested Citation

  • Bikram Manandhar & Shenghui Cui & Lihong Wang & Sabita Shrestha, 2023. "Post-Flood Resilience Assessment of July 2021 Flood in Western Germany and Henan, China," Land, MDPI, vol. 12(3), pages 1-32, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:625-:d:1089096
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Upton, Joanna & Constenla-Villoslada, Susana & Barrett, Christopher B., 2022. "Caveat utilitor: A comparative assessment of resilience measurement approaches," Journal of Development Economics, Elsevier, vol. 157(C).
    2. Peng Wang & Yabo Li & Yuhu Zhang, 2021. "An urban system perspective on urban flood resilience using SEM: evidence from Nanjing city, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(3), pages 2575-2599, December.
    3. Kim A. Johnston & Maureen Taylor & Barbara Ryan, 2022. "Engaging communities to prepare for natural hazards: a conceptual model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2831-2851, July.
    4. Len Fisher, 2015. "More than 70 ways to show resilience," Nature, Nature, vol. 518(7537), pages 35-35, February.
    5. Behnam Ghasemzadeh & Zahra Sadat Saeideh Zarabadi & Hamid Majedi & Mostafa Behzadfar & Ayyoob Sharifi, 2021. "A Framework for Urban Flood Resilience Assessment with Emphasis on Social, Economic and Institutional Dimensions: A Qualitative Study," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    6. Lee, Yoonjeong & Brody, Samuel D., 2018. "Examining the impact of land use on flood losses in Seoul, Korea," Land Use Policy, Elsevier, vol. 70(C), pages 500-509.
    7. Guoqu Deng & Hu Chen & Siqi Wang & Lazim Abdullah, 2022. "Risk Assessment and Prediction of Rainstorm and Flood Disaster Based on Henan Province, China," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-17, February.
    8. Zhengru Tao & Lu Han, 2022. "Emergency Response, Influence and Lessons in the 2021 Compound Disaster in Henan Province of China," IJERPH, MDPI, vol. 19(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eva Katharina Platzer & Michèle Knodt, 2023. "Resilience beyond insurance: coordination in crisis governance," Environment Systems and Decisions, Springer, vol. 43(4), pages 569-576, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Letizia Tebaldi & Giuseppe Vignali, 2023. "Is it possible to quantify the current resilience level of an agri-food system? A review of the literature," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 11(1), pages 1-22, December.
    2. Li, Rongda & He, Jing, 2024. "FinTech development and household resilience to negative income shocks: The role of informal risk sharing," International Review of Economics & Finance, Elsevier, vol. 94(C).
    3. Premand, Patrick & Stoeffler, Quentin, 2022. "Cash transfers, climatic shocks and resilience in the Sahel," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    4. Egamberdiev, Bekhzod, 2024. "Social capital effects on resilience to food insecurity: Evidence from Kyrgyzstan," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 36(1), pages 435-450.
    5. Yanbo Duan & Yu Gary Gao & Yusen Zhang & Huawei Li & Zhonghui Li & Ziying Zhou & Guohang Tian & Yakai Lei, 2022. "“The 20 July 2021 Major Flood Event” in Greater Zhengzhou, China: A Case Study of Flooding Severity and Landscape Characteristics," Land, MDPI, vol. 11(11), pages 1-23, October.
    6. Bageant, Elizabeth & Lentz, Erin & Narayanan, Sudha & Jensen, Nathan & Lepariyo, Watson, 2024. "How do women’s empowerment metrics measure up? A comparative analysis," Food Policy, Elsevier, vol. 129(C).
    7. Ianoş, Ioan & Ionică, Cristian & Sîrodoev, Igor & Sorensen, Anthony & Bureţa, Emanuel & Merciu, George & Paraschiv, Mirela & Tălângă, Cristian, 2019. "Inadequate risk management and excessive response to flood disaster create unexpected land use changes and potential local conflicts," Land Use Policy, Elsevier, vol. 88(C).
    8. Qian Gu & Fuxin Chai & Wenbin Zang & Hongping Zhang & Xiaoli Hao & Huimin Xu, 2025. "A Two-Level Early Warning System on Urban Floods Caused by Rainstorm," Sustainability, MDPI, vol. 17(5), pages 1-16, March.
    9. Hui Zhang & Jing Li & Tianshu Quan, 2023. "Strengthening or Weakening: The Impact of an Aging Rural Workforce on Agricultural Economic Resilience in China," Agriculture, MDPI, vol. 13(7), pages 1-16, July.
    10. Jaroslava Janků & Kristina Heřmanová & Josef Kozák & Jan Jehlička & Mansoor Maitah & Karel Němeček & Jan Vopravil & Daniel Toth & Karel Jacko & Tomáš Herza, 2020. "Industrial zones and their benefits for society," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 15(4), pages 258-272.
    11. Xinghua Feng & Chunliang Xiu & Jianxin Li & Yexi Zhong, 2021. "Measuring the Evolution of Urban Resilience Based on the Exposure–Connectedness–Potential (ECP) Approach: A Case Study of Shenyang City, China," Land, MDPI, vol. 10(12), pages 1-22, November.
    12. Qingmu Su & Kaida Chen & Lingyun Liao, 2021. "The Impact of Land Use Change on Disaster Risk from the Perspective of Efficiency," Sustainability, MDPI, vol. 13(6), pages 1-14, March.
    13. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    14. Shanzhong Qi & Shufen Cao & Shunli Hu & Qian Liu, 2024. "Bibliometric analysis on urban flood and waterlogging disasters during the period of 1998—2022," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 12595-12612, November.
    15. Ranucci, Immacolata & Romano, Donato & Tiberti, Luca, 2025. "Weather shocks and resilience to food insecurity: Exploring the role of gender and kinship norms," World Development, Elsevier, vol. 188(C).
    16. Premand, Patrick & Stoeffler, Quentin, 2022. "Cash transfers, climatic shocks and resilience in the Sahel," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    17. Țîncu, Roxana & Zêzere, José Luis & Crăciun, Iulia & Lazăr, Gabriel & Lazăr, Iuliana, 2020. "Quantitative micro-scale flood risk assessment in a section of the Trotuș River, Romania," Land Use Policy, Elsevier, vol. 95(C).
    18. Manh Hung Do, 2023. "The Role of Savings and Income Diversification in Households’ Resilience Strategies: Evidence from Rural Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 353-388, August.
    19. Pengcheng Zhong & Yueyi Liu & Hang Zheng & Jianshi Zhao, 2024. "Detection of Urban Flood Inundation from Traffic Images Using Deep Learning Methods," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 287-301, January.
    20. Yang, Jingna & Zhou, Kaile & Hu, Rong, 2024. "City-level resilience assessment of integrated energy systems in China," Energy Policy, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:625-:d:1089096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.