IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i2p297-d1042320.html
   My bibliography  Save this article

A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China

Author

Listed:
  • Zhiyuan Ma

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Xuejun Duan

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Lei Wang

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Yazhu Wang

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

  • Jiayu Kang

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Ruxian Yun

    (Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
    Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China)

Abstract

Assessing the impacts and drivers of urban expansion on terrestrial carbon storage (TCS) is important for urban ecology and sustainability; however, a unified accounting standard for carbon intensity and research on the drivers and economic value of TCS changes are lacking. Here, urban expansion and TCS in the Yangtze River Delta were simulated based on Patch-generating Land Use Simulation and Integrated Valuation of Ecosystem Services and Trade-offs models; scenario simulation; Literature, Correction, Ratio, Verification carbon intensity measurement; and land use transfer matrix methods. The results showed that (1) from 2000 to 2020, urbanization and TCS loss accelerated, with 61.127% of TCS loss occurring in soil, and land conversion was prominent in riverine and coastal cities, mainly driven by the urban land occupation of cropland around suitable slopes, transportation arteries, and rivers. (2) From 2020 to 2030, urban land expansion and TCS loss varied under different scenarios; economic losses from the loss of the carbon sink value under cropland protection and ecological protection were USD 102.368 and 287.266 million lower, respectively, than under the baseline scenario. Even if urban expansion slows, the loss of TCS under global warming cannot be ignored. Considering the indirect impacts of urbanization, the failure to establish a regional development master plan based on ecosystem services may affect China’s carbon targets.

Suggested Citation

  • Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:297-:d:1042320
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/2/297/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/2/297/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    2. Katharine Ricke & Laurent Drouet & Ken Caldeira & Massimo Tavoni, 2018. "Country-level social cost of carbon," Nature Climate Change, Nature, vol. 8(10), pages 895-900, October.
    3. Campbell, Elliott & Marks, Rachel & Conn, Christine, 2020. "Spatial modeling of the biophysical and economic values of ecosystem services in Maryland, USA," Ecosystem Services, Elsevier, vol. 43(C).
    4. Taher Osman & Prasanna Divigalpitiya & Takafumi Arima, 2016. "Driving factors of urban sprawl in Giza governorate of the Greater Cairo Metropolitan Region using a logistic regression model," International Journal of Urban Sciences, Taylor & Francis Journals, vol. 20(2), pages 206-225, July.
    5. Scholte, Samantha S.K. & van Teeffelen, Astrid J.A. & Verburg, Peter H., 2015. "Integrating socio-cultural perspectives into ecosystem service valuation: A review of concepts and methods," Ecological Economics, Elsevier, vol. 114(C), pages 67-78.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guariso, Giorgio & Sangiorgio, Matteo, 2019. "Multi-objective planning of building stock renovation," Energy Policy, Elsevier, vol. 130(C), pages 101-110.
    2. Kenter, Jasper O. & Bryce, Rosalind & Christie, Michael & Cooper, Nigel & Hockley, Neal & Irvine, Katherine N. & Fazey, Ioan & O’Brien, Liz & Orchard-Webb, Johanne & Ravenscroft, Neil & Raymond, Chr, 2016. "Shared values and deliberative valuation: Future directions," Ecosystem Services, Elsevier, vol. 21(PB), pages 358-371.
    3. Patrycja Klusak & Matthew Agarwala & Matt Burke & Moritz Kraemer & Kamiar Mohaddes, 2023. "Rising Temperatures, Falling Ratings: The Effect of Climate Change on Sovereign Creditworthiness," Management Science, INFORMS, vol. 69(12), pages 7468-7491, December.
    4. Rode, Julian & Le Menestrel, Marc & Cornelissen, Gert, 2017. "Ecosystem Service Arguments Enhance Public Support for Environmental Protection - But Beware of the Numbers!," Ecological Economics, Elsevier, vol. 141(C), pages 213-221.
    5. Fremstad, Anders & Paul, Mark, 2022. "Neoliberalism and climate change: How the free-market myth has prevented climate action," Ecological Economics, Elsevier, vol. 197(C).
    6. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    7. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    8. Yangang Xing & Phil Jones & Iain Donnison, 2017. "Characterisation of Nature-Based Solutions for the Built Environment," Sustainability, MDPI, vol. 9(1), pages 1-20, January.
    9. Yannic Rehm & Lucas Chancel, 2022. "Measuring the Carbon Content of Wealth Evidence from France and Germany," PSE Working Papers halshs-03828939, HAL.
    10. Golinucci, Nicolò & Tonini, Francesco & Rocco, Matteo Vincenzo & Colombo, Emanuela, 2023. "Towards BitCO2, an individual consumption-based carbon emission reduction mechanism," Energy Policy, Elsevier, vol. 183(C).
    11. Matthias Bürgi & Panna Ali & Afroza Chowdhury & Andreas Heinimann & Cornelia Hett & Felix Kienast & Manoranjan Kumar Mondal & Bishnu Raj Upreti & Peter H. Verburg, 2017. "Integrated Landscape Approach: Closing the Gap between Theory and Application," Sustainability, MDPI, vol. 9(8), pages 1-13, August.
    12. Lavin, Luke & Apt, Jay, 2021. "The importance of peak pricing in realizing system benefits from distributed storage," Energy Policy, Elsevier, vol. 157(C).
    13. Beichen Ge & Congjin Wang & Yuhong Song, 2023. "Ecosystem Services Research in Rural Areas: A Systematic Review Based on Bibliometric Analysis," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    14. Ghodeswar, Archana & Oliver, Matthew E., 2022. "Trading one waste for another? Unintended consequences of fly ash reuse in the Indian electric power sector," Energy Policy, Elsevier, vol. 165(C).
    15. Makarov, I. & Chernokulsky, A., 2023. "Impacts of climate change on the Russian economy: Ranking of regions by adaptation needs," Journal of the New Economic Association, New Economic Association, vol. 61(4), pages 145-202.
    16. Liu, Chunyu & Zheng, Xinrui & Yang, Haibin & Tang, Waiching & Sang, Guochen & Cui, Hongzhi, 2023. "Techno-economic evaluation of energy storage systems for concentrated solar power plants using the Monte Carlo method," Applied Energy, Elsevier, vol. 352(C).
    17. Tong Zhang, Paul J. Burke, and Qi Wang, 2024. "Effectiveness of electric vehicle subsidies in China: A three-dimensional panel study," Departmental Working Papers 2024-1, The Australian National University, Arndt-Corden Department of Economics.
    18. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    19. Maria Mrówczyńska & Małgorzata Sztubecka & Marta Skiba & Anna Bazan-Krzywoszańska & Przemysław Bejga, 2019. "The Use of Artificial Intelligence as a Tool Supporting Sustainable Development Local Policy," Sustainability, MDPI, vol. 11(15), pages 1-17, August.
    20. Abdelkader, Mahmood & Sliuzas, Richard & Boerboom, Luc & Zevenbergen, Jaap, 2022. "The unintended consequences of Egypt's institutional land regime on unplanned settlement growth in the Nile Valley," Land Use Policy, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:2:p:297-:d:1042320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.