IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i9p380-d1462741.html
   My bibliography  Save this article

Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN

Author

Listed:
  • Adel Hassan A. Gadhi

    (School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
    Institute of Public Administration, Riyadh 11141, Saudi Arabia)

  • Shelton Peiris

    (School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia)

  • David E. Allen

    (School of Mathematics and Statistics, The University of Sydney, Camperdown, NSW 2006, Australia
    School of Business and Law, Edith Cowan University, Joondalup, WA 6027, Australia
    Department of Finance, Asia University, Taichung 41354, Taiwan)

Abstract

This paper examines the predictive ability of volatility in time series and investigates the effect of tradition learning methods blending with the Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Using Brent crude oil returns price volatility and environmental temperature for the city of Sydney in Australia, we have shown that the corresponding forecasts have improved when combined with WGAN-GP models (i.e., ANN-(WGAN-GP), LSTM-ANN-(WGAN-GP) and BLSTM-ANN (WGAN-GP)). As a result, we conclude that incorporating with WGAN-GP will’ significantly improve the capabilities of volatility forecasting in standard econometric models and deep learning techniques.

Suggested Citation

  • Adel Hassan A. Gadhi & Shelton Peiris & David E. Allen, 2024. "Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN," JRFM, MDPI, vol. 17(9), pages 1-20, August.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:9:p:380-:d:1462741
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/9/380/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/9/380/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Lu, 2019. "Artificial intelligence: a survey on evolution, models, applications and future trends," Journal of Management Analytics, Taylor & Francis Journals, vol. 6(1), pages 1-29, January.
    2. Malik, Farooq & Ewing, Bradley T., 2009. "Volatility transmission between oil prices and equity sector returns," International Review of Financial Analysis, Elsevier, vol. 18(3), pages 95-100, June.
    3. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    4. Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
    5. Khalfaoui, R. & Boutahar, M. & Boubaker, H., 2015. "Analyzing volatility spillovers and hedging between oil and stock markets: Evidence from wavelet analysis," Energy Economics, Elsevier, vol. 49(C), pages 540-549.
    6. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Hassan A. Gadhi & Shelton Peiris & David E. Allen & Richard Hunt, 2025. "Optimal Time Series Forecasting Through the GARMA Model," Econometrics, MDPI, vol. 13(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belhassine, Olfa & Karamti, Chiraz, 2021. "Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis," Energy Economics, Elsevier, vol. 102(C).
    2. Huang, Alex YiHou & Peng, Sheng-Pen & Li, Fangjhy & Ke, Ching-Jie, 2011. "Volatility forecasting of exchange rate by quantile regression," International Review of Economics & Finance, Elsevier, vol. 20(4), pages 591-606, October.
    3. Sarwar, Suleman & Khalfaoui, Rabeh & Waheed, Rida & Dastgerdi, Hamidreza Ghorbani, 2019. "Volatility spillovers and hedging: Evidence from Asian oil-importing countries," Resources Policy, Elsevier, vol. 61(C), pages 479-488.
    4. Coskun, Merve & Taspinar, Nigar, 2022. "Volatility spillovers between Turkish energy stocks and fossil fuel energy commodities based on time and frequency domain approaches," Resources Policy, Elsevier, vol. 79(C).
    5. Stavros Degiannakis & George Filis & Vipin Arora, 2018. "Oil Prices and Stock Markets: A Review of the Theory and Empirical Evidence," The Energy Journal, , vol. 39(5), pages 85-130, September.
    6. Sarwar, Suleman & Shahbaz, Muhammad & Anwar, Awais & Tiwari, Aviral Kumar, 2019. "The importance of oil assets for portfolio optimization: The analysis of firm level stocks," Energy Economics, Elsevier, vol. 78(C), pages 217-234.
    7. Akkoc, Ugur & Civcir, Irfan, 2019. "Dynamic linkages between strategic commodities and stock market in Turkey: Evidence from SVAR-DCC-GARCH model," Resources Policy, Elsevier, vol. 62(C), pages 231-239.
    8. Brunetti, Celso & Scotti, Chiara & Mariano, Roberto S. & Tan, Augustine H.H., 2008. "Markov switching GARCH models of currency turmoil in Southeast Asia," Emerging Markets Review, Elsevier, vol. 9(2), pages 104-128, June.
    9. İrfan Civcir & Uğur Akkoç, 2021. "Dynamic volatility linkages and hedging between commodities and sectoral stock returns in Turkey: Evidence from SVAR‐cDCC‐GARCH model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1978-1992, April.
    10. Yadav, Miklesh Prasad & Sharif, Taimur & Ashok, Shruti & Dhingra, Deepika & Abedin, Mohammad Zoynul, 2023. "Investigating volatility spillover of energy commodities in the context of the Chinese and European stock markets," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Morema, Kgotso & Bonga-Bonga, Lumengo, 2018. "The impact of oil and gold price fluctuations on the South African equity market: volatility spillovers and implications for portfolio management," MPRA Paper 87637, University Library of Munich, Germany.
    12. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & de Gracia, Fernando Perez, 2023. "Dynamic connectedness among the implied volatilities of oil prices and financial assets: New evidence of the COVID-19 pandemic," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 114-123.
    13. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," NBER Working Papers 9839, National Bureau of Economic Research, Inc.
    14. Lv, Xin & Lien, Donald & Yu, Chang, 2020. "Who affects who? Oil price against the stock return of oil-related companies: Evidence from the U.S. and China," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 85-100.
    15. Ahmed, Walid M.A., 2017. "On the dynamic interactions between energy and stock markets under structural shifts: Evidence from Egypt," Research in International Business and Finance, Elsevier, vol. 42(C), pages 61-74.
    16. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    17. Sarwar, Suleman & Tiwari, Aviral Kumar & Tingqiu, Cao, 2020. "Analyzing volatility spillovers between oil market and Asian stock markets," Resources Policy, Elsevier, vol. 66(C).
    18. Belhassine, Olfa, 2020. "Volatility spillovers and hedging effectiveness between the oil market and Eurozone sectors: A tale of two crises," Research in International Business and Finance, Elsevier, vol. 53(C).
    19. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    20. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & de Gracia, Fernando Perez, 2020. "Oil and asset classes implied volatilities: Investment strategies and hedging effectiveness," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:9:p:380-:d:1462741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.