IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i5p177-d1381488.html
   My bibliography  Save this article

Transformation of the Ukrainian Stock Market: A Data Properties View

Author

Listed:
  • Alex Plastun

    (Department of International Economic Relations, Sumy State University, 40000 Sumy, Ukraine)

  • Lesia Hariaha

    (Department of Economics and International Economic Relations, Bohdan Khmelnytsky National University of Cherkasy, 18028 Cherkasy, Ukraine)

  • Oleksandr Yatsenko

    (Department of Enterprise Economics, Accounting and Audit, Bohdan Khmelnytsky National University of Cherkasy, 18028 Cherkasy, Ukraine)

  • Olena Hasii

    (Department of Finance and Banking, Poltava University of Economics and Trade, 36007 Poltava, Ukraine)

  • Liudmyla Sliusareva

    (Department of Economics, University of the State Fiscal Service of Ukraine, 08200 Irpin, Ukraine)

Abstract

This paper investigates the evolution of the Ukrainian stock market through an analysis of various data properties, including persistence, volatility, normality, and resistance to anomalies for the case of daily returns from the PFTS stock index spanning 1995–2022. Segmented into sub-periods, it aims to test the hypothesis that the market’s efficiency has increased over time. To do this different statistical techniques and methods are used, including R/S analysis, ANOVA analysis, regression analysis with dummy variables, t -tests, and others. The findings present a mixed picture: while volatility and persistence demonstrate a general decreasing trend, indicating a potential shift towards a more efficient market, normality tests reveal no discernible differences between analyzed periods. Similarly, the analysis of anomalies shows no specific trends in the market’s resilience to the day-of-the-week effect. Overall, the results suggest a lack of systematic changes in data properties in the Ukrainian stock market over time, possibly due to the country’s volatile conditions, including two revolutions, economic crises, the annexation of territories, and a Russian invasion leading to the largest war in Europe since WWII. The limited impact of reforms and changes justifies the need for continued market reform and evolution post-war.

Suggested Citation

  • Alex Plastun & Lesia Hariaha & Oleksandr Yatsenko & Olena Hasii & Liudmyla Sliusareva, 2024. "Transformation of the Ukrainian Stock Market: A Data Properties View," JRFM, MDPI, vol. 17(5), pages 1-16, April.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:5:p:177-:d:1381488
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/5/177/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/5/177/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    2. Greene, Myron T. & Fielitz, Bruce D., 1977. "Long-term dependence in common stock returns," Journal of Financial Economics, Elsevier, vol. 4(3), pages 339-349, May.
    3. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dadan Rahadian & Anisah Firli & Hasan Dinçer & Serhat Yüksel & Alexey Mikhaylov, 2025. "Analysing the financial innovation-based characteristics of stock market efficiency using fuzzy decision-making technique," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asif, Raheel & Frömmel, Michael, 2022. "Testing Long memory in exchange rates and its implications for the adaptive market hypothesis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    2. Christos Christodoulou-Volos & Fotios Siokis, 2006. "Long range dependence in stock market returns," Applied Financial Economics, Taylor & Francis Journals, vol. 16(18), pages 1331-1338.
    3. Gerlich, Nikolas & Rostek, Stefan, 2015. "Estimating serial correlation and self-similarity in financial time series—A diversification approach with applications to high frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 84-98.
    4. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    5. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    6. Duan, Yunpeng & Xue, Yi, 2014. "Bipower variation with jumps and correlated returns," Economics Letters, Elsevier, vol. 125(3), pages 367-371.
    7. Ya-Chi Huang, 2017. "Exploring issues of market inefficiency by the role of forecasting accuracy in survivability," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 167-191, July.
    8. Jacobsen, Ben, 1996. "Long term dependence in stock returns," Journal of Empirical Finance, Elsevier, vol. 3(4), pages 393-417, December.
    9. Anju Bala & Kapil Gupta, 2020. "Examining The Long Memory In Stock Returns And Liquidity In India," Copernican Journal of Finance & Accounting, Uniwersytet Mikolaja Kopernika, vol. 9(3), pages 25-43.
    10. Onali, Enrico & Goddard, John, 2009. "Unifractality and multifractality in the Italian stock market," International Review of Financial Analysis, Elsevier, vol. 18(4), pages 154-163, September.
    11. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    12. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    13. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    14. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    15. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    16. Benjamin Rainer Auer, 2018. "Are standard asset pricing factors long-range dependent?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 42(1), pages 66-88, January.
    17. Jorge Belaire-Franch & Kwaku Opong, 2005. "A Variance Ratio Test of the Behaviour of Some FTSE Equity Indices Using Ranks and Signs," Review of Quantitative Finance and Accounting, Springer, vol. 24(1), pages 93-107, January.
    18. Proelss, Juliane & Schweizer, Denis & Seiler, Volker, 2020. "The economic importance of rare earth elements volatility forecasts," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. Massimiliano Giacalone & Demetrio Panarello, 2022. "A Nonparametric Approach for Testing Long Memory in Stock Returns’ Higher Moments," Mathematics, MDPI, vol. 10(5), pages 1-21, February.
    20. Christian de Peretti, 2003. "Bilateral Bootstrap Tests for Long Memory: An Application to the Silver Market," Computational Economics, Springer;Society for Computational Economics, vol. 22(2), pages 187-212, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:5:p:177-:d:1381488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.