IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v15y2022i6p246-d828820.html
   My bibliography  Save this article

A New Look at the Swing Contract: From Linear Programming to Particle Swarm Optimization

Author

Listed:
  • Tapio Behrndt

    (Gasum Oy, Revontulenpuisto 2C, 02100 Helsinki, Finland)

  • Ren-Raw Chen

    (Gabelli School Business, Fordham University, 45 Columbus Avenue, New York, NY 10019, USA)

Abstract

As the energy market has grown in importance in recent decades, researchers have paid increasing attention to swing option contracts. Early studies evaluated the swing contract as if it were a financial derivative contract, by ignoring its storage constraints. Aided by recent advances in artificial intelligence (AI) and machine learning (ML) technologies, recent studies were able to incorporate storage limitations. We make two discoveries in this paper. First, we contribute to the literature by proposing an AI methodology—particle swarm optimization (PSO)—for the evaluation of the swing contract. Compared to the other ML methodologies in the literature, PSO has an advantage by expanding to include more features. Secondly, we study the relative impact of the price process (exogenously given) that underlies the swing contract and the storage constraints that affect a quantity decision process (endogenously decided), and discover that the latter has a much greater impact than the former, indicating the limitation of the earlier literature that focused only on price dynamics.

Suggested Citation

  • Tapio Behrndt & Ren-Raw Chen, 2022. "A New Look at the Swing Contract: From Linear Programming to Particle Swarm Optimization," JRFM, MDPI, vol. 15(6), pages 1-20, May.
  • Handle: RePEc:gam:jjrfmx:v:15:y:2022:i:6:p:246-:d:828820
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/15/6/246/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/15/6/246/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    2. Patrick Jaillet & Ehud I. Ronn & Stathis Tompaidis, 2004. "Valuation of Commodity-Based Swing Options," Management Science, INFORMS, vol. 50(7), pages 909-921, July.
    3. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    4. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Papers 2102.01980, arXiv.org, revised Mar 2021.
    5. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    6. Ren-Raw Chen & Jeffrey Huang & William Huang & Robert Yu, 2021. "An Artificial Intelligence Approach to the Valuation of American-Style Derivatives: A Use of Particle Swarm Optimization," JRFM, MDPI, vol. 14(2), pages 1-22, February.
    7. Olivier Bardou & Sandrine Bouthemy & Gilles Pages, 2009. "Optimal Quantization for the Pricing of Swing Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(2), pages 183-217.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Wenfeng & Kang, Boda, 2019. "Analysis of a multiple year gas sales agreement with make-up, carry-forward and indexation," Energy Economics, Elsevier, vol. 79(C), pages 76-96.
    2. John Ery & Loris Michel, 2021. "Solving optimal stopping problems with Deep Q-Learning," Papers 2101.09682, arXiv.org.
    3. Felix, Bastian Joachim & Weber, Christoph, 2012. "Gas storage valuation applying numerically constructed recombining trees," European Journal of Operational Research, Elsevier, vol. 216(1), pages 178-187.
    4. Nicolas Curin & Michael Kettler & Xi Kleisinger-Yu & Vlatka Komaric & Thomas Krabichler & Josef Teichmann & Hanna Wutte, 2021. "A deep learning model for gas storage optimization," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1021-1037, December.
    5. Francisco Bernal & Emmanuel Gobet & Jacques Printems, 2020. "Volatility Uncertainty Quantification in a Stochastic Control Problem Applied to Energy," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 135-159, March.
    6. Nicolas Essis-Breton & Patrice Gaillardetz, 2020. "Fast Lower and Upper Estimates for the Price of Constrained Multiple Exercise American Options by Single Pass Lookahead Search and Nearest-Neighbor Martingale," Papers 2002.11258, arXiv.org.
    7. Giorgia Callegaro & Luciano Campi & Valeria Giusto & Tiziano Vargiolu, 2017. "Utility indifference pricing and hedging for structured contracts in energy markets," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(2), pages 265-303, April.
    8. Tiziano De Angelis & Yerkin Kitapbayev, 2018. "On the Optimal Exercise Boundaries of Swing Put Options," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 252-274, February.
    9. Edoli, Enrico & Fiorenzani, Stefano & Ravelli, Samuele & Vargiolu, Tiziano, 2013. "Modeling and valuing make-up clauses in gas swing contracts," Energy Economics, Elsevier, vol. 35(C), pages 58-73.
    10. Vincent Lemaire & Gilles Pag`es & Christian Yeo, 2023. "Swing contract pricing: with and without Neural Networks," Papers 2306.03822, arXiv.org, revised Mar 2024.
    11. Roberto Daluiso & Emanuele Nastasi & Andrea Pallavicini & Giulio Sartorelli, 2020. "Pricing commodity swing options," Papers 2001.08906, arXiv.org.
    12. Jiao Wang & Lima Zhao & Arnd Huchzermeier, 2021. "Operations‐Finance Interface in Risk Management: Research Evolution and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(2), pages 355-389, February.
    13. Kimmel, Robert L., 2004. "Modeling the term structure of interest rates: A new approach," Journal of Financial Economics, Elsevier, vol. 72(1), pages 143-183, April.
    14. E. Nasakkala & J. Keppo, 2008. "Hydropower with Financial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 503-529.
    15. Soren Christensen & Albrecht Irle & Stephan Jurgens, 2012. "Optimal multiple stopping with random waiting times," Papers 1205.1966, arXiv.org.
    16. Thomas Deschatre & Xavier Warin, 2023. "A Common Shock Model for multidimensional electricity intraday price modelling with application to battery valuation," Papers 2307.16619, arXiv.org.
    17. Aleksandar Mijatovi'c & Martijn Pistorius, 2009. "Exotic derivatives under stochastic volatility models with jumps," Papers 0912.2595, arXiv.org, revised Oct 2010.
    18. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    19. Möst, Dominik & Keles, Dogan, 2010. "A survey of stochastic modelling approaches for liberalised electricity markets," European Journal of Operational Research, Elsevier, vol. 207(2), pages 543-556, December.
    20. d'Halluin, Y. & Forsyth, P.A. & Vetzal, K.R., 2007. "Wireless network capacity management: A real options approach," European Journal of Operational Research, Elsevier, vol. 176(1), pages 584-609, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:15:y:2022:i:6:p:246-:d:828820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.