IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.19151.html
   My bibliography  Save this paper

Optimal dividends for a NatCat insurer in the presence of a climate tipping point

Author

Listed:
  • Hansjoerg Albrecher
  • Pablo Azcue
  • Nora Muler

Abstract

We study optimal dividend strategies for an insurance company facing natural catastrophe claims, anticipating the arrival of a climate tipping point after which the claim intensity and/or the claim size distribution of the underlying risks deteriorates irreversibly. Extending earlier literature based on a shot-noise Cox process assumption for claim arrivals, we show that the non-stationary feature of such a tipping point can, in fact, be an advantage for shareholders seeking to maximize expected discounted dividends over the lifetime of the portfolio. Assuming the tipping point arrives according to an Erlang distribution, we demonstrate that the corresponding system of two-dimensional stochastic control problems admits a viscosity solution, which can be numerically approximated using a discretization of the current surplus and the claim intensity level. We also prove uniform convergence of this discrete solution to that of the original continuous problem. The results are illustrated through several numerical examples, and the sensitivity of the optimal dividend strategies to the presence of a climate tipping point is analyzed. In all these examples, it turns out that when the insurance premium is adjusted fairly at the moment of the tipping point, and all quantities are observable, the non-stationarity introduced by the tipping point can, in fact, represent an upward potential for shareholders.

Suggested Citation

  • Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2025. "Optimal dividends for a NatCat insurer in the presence of a climate tipping point," Papers 2504.19151, arXiv.org.
  • Handle: RePEc:arx:papers:2504.19151
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.19151
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Avanzi, 2009. "Strategies for Dividend Distribution: A Review," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(2), pages 217-251.
    2. Timothy M. Lenton & Johan Rockström & Owen Gaffney & Stefan Rahmstorf & Katherine Richardson & Will Steffen & Hans Joachim Schellnhuber, 2019. "Climate tipping points — too risky to bet against," Nature, Nature, vol. 575(7784), pages 592-595, November.
    3. Asmussen, Soren & Avram, Florin & Usabel, Miguel, 2002. "Erlangian Approximations for Finite-Horizon Ruin Probabilities," ASTIN Bulletin, Cambridge University Press, vol. 32(2), pages 267-281, November.
    4. Carr, Peter, 1998. "Randomization and the American Put," The Review of Financial Studies, Society for Financial Studies, vol. 11(3), pages 597-626.
    5. Hansjörg Albrecher & Søren Asmussen c, 2006. "Ruin probabilities and aggregrate claims distributions for shot noise Cox processes," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2006(2), pages 86-110.
    6. Zhengjun Jiang & Martijn Pistorius, 2012. "Optimal dividend distribution under Markov regime switching," Finance and Stochastics, Springer, vol. 16(3), pages 449-476, July.
    7. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    8. Reto Schneider, 2023. "Extreme events require new forms of financial collaboration to become more resilient," Environment Systems and Decisions, Springer, vol. 43(4), pages 544-554, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choi, Michael C.H. & Cheung, Eric C.K., 2014. "On the expected discounted dividends in the Cramér–Lundberg risk model with more frequent ruin monitoring than dividend decisions," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 121-132.
    2. Landriault, David & Lemieux, Christiane & Willmot, Gordon E., 2012. "An adaptive premium policy with a Bayesian motivation in the classical risk model," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 370-378.
    3. Hansjoerg Albrecher & Pablo Azcue & Nora Muler, 2023. "Optimal dividend strategies for a catastrophe insurer," Papers 2311.05781, arXiv.org.
    4. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Papers 2108.00234, arXiv.org.
    5. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "On the optimality of joint periodic and extraordinary dividend strategies," Papers 2006.00717, arXiv.org, revised Dec 2020.
    6. Cheung, Eric C.K. & Wong, Jeff T.Y., 2017. "On the dual risk model with Parisian implementation delays in dividend payments," European Journal of Operational Research, Elsevier, vol. 257(1), pages 159-173.
    7. Avanzi, Benjamin & Lau, Hayden & Wong, Bernard, 2021. "On the optimality of joint periodic and extraordinary dividend strategies," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1189-1210.
    8. Szölgyenyi Michaela, 2015. "Dividend maximization in a hidden Markov switching model," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 143-158, December.
    9. Tiziano De Angelis, 2018. "Optimal dividends with partial information and stopping of a degenerate reflecting diffusion," Papers 1805.12035, arXiv.org, revised Mar 2019.
    10. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    11. Avanzi, Benjamin & Tu, Vincent & Wong, Bernard, 2018. "Optimal dividends under Erlang(2) inter-dividend decision times," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 225-242.
    12. Gunther Leobacher & Michaela Szolgyenyi & Stefan Thonhauser, 2016. "Bayesian Dividend Optimization and Finite Time Ruin Probabilities," Papers 1602.04660, arXiv.org.
    13. Benjamin Avanzi & Hayden Lau & Bernard Wong, 2020. "Optimal periodic dividend strategies for spectrally negative L\'evy processes with fixed transaction costs," Papers 2004.01838, arXiv.org, revised Dec 2020.
    14. Stefan Kremsner & Alexander Steinicke & Michaela Szölgyenyi, 2020. "A Deep Neural Network Algorithm for Semilinear Elliptic PDEs with Applications in Insurance Mathematics," Risks, MDPI, vol. 8(4), pages 1-18, December.
    15. Ferrari, Giorgio & Schuhmann, Patrick & Zhu, Shihao, 2022. "Optimal dividends under Markov-modulated bankruptcy level," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 146-172.
    16. Avanzi, Benjamin & Cheung, Eric C.K. & Wong, Bernard & Woo, Jae-Kyung, 2013. "On a periodic dividend barrier strategy in the dual model with continuous monitoring of solvency," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 98-113.
    17. Giorgio Ferrari & Patrick Schuhmann, 2018. "An Optimal Dividend Problem with Capital Injections over a Finite Horizon," Papers 1804.04870, arXiv.org, revised May 2019.
    18. Julia Eisenberg & Stefan Kremsner & Alexander Steinicke, 2021. "Two Approaches for a Dividend Maximization Problem under an Ornstein-Uhlenbeck Interest Rate," Mathematics, MDPI, vol. 9(18), pages 1-20, September.
    19. David Landriault & Jean-François Renaud & Xiaowen Zhou, 2014. "An Insurance Risk Model with Parisian Implementation Delays," Methodology and Computing in Applied Probability, Springer, vol. 16(3), pages 583-607, September.
    20. Asmussen, Søren & Avram, Florin & Pistorius, Martijn R., 2004. "Russian and American put options under exponential phase-type Lévy models," Stochastic Processes and their Applications, Elsevier, vol. 109(1), pages 79-111, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.19151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.